[Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

The Pythagoras number of function fields Seminar on Arithmetic Geometry and Algebraic Groups

Nicolas Daans

joint work with Karim Becher, David Grimm, Gonzalo Manzano-Flores, Marco Zaninelli

Charles University, Faculty of Mathematics and Physics, Department of Algebra

24 April 2023

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0)

[Sums of squares](#page-3-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0)

[Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Sums of squares](#page-3-0)

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

Corollary (Euler, < 1750)

Every positive rational number is a sum of 4 squares of rational numbers.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0)

[Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Sums of squares](#page-1-0)

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

Corollary (Euler, < 1750)

Every positive rational number is a sum of 4 squares of rational numbers.

We want to interpret these results as describing the value of an invariant associated to the rings $\mathbb Z$ and $\mathbb Q$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0)

[Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0)

[Outline of the talk](#page-26-0)

For a commutative ring K and $n \in \mathbb{N}$, define:

$$
\Sigma_n K^2 = \{x_1^2 + \dots + x_n^2 \mid x_1, \dots, x_n \in K\}
$$

\n
$$
\Sigma K^2 = \bigcup_{n \in \mathbb{N}} \Sigma_n K^2
$$

\n
$$
\rho(K) = \inf \{ n \in \mathbb{N} \mid \Sigma K^2 = \Sigma_n K^2 \} \in \mathbb{N} \cup \{ \infty \}.
$$

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0)

[Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Sums of squares](#page-1-0)

For a commutative ring K and $n \in \mathbb{N}$, define:

$$
\Sigma_n K^2 = \{x_1^2 + \dots + x_n^2 \mid x_1, \dots, x_n \in K\}
$$

\n
$$
\Sigma K^2 = \bigcup_{n \in \mathbb{N}} \Sigma_n K^2
$$

\n
$$
\rho(K) = \inf \{ n \in \mathbb{N} \mid \Sigma K^2 = \Sigma_n K^2 \} \in \mathbb{N} \cup \{ \infty \}.
$$

We call $p(K)$ the Pythagoras number of K. We will focus on the case where K is a field.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-9-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

Some first observations:

• $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K) \leq 4$ (Siegel, 1921),

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-9-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

Some first observations:

- $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K) \leq 4$ (Siegel, 1921),
- $p(\mathbb{R}) = p(\mathbb{C}) = 1$,

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-9-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

Some first observations:

- $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K)$ < 4 (Siegel, 1921),
- $p(\mathbb{R}) = p(\mathbb{C}) = 1$,
- If char $K = 2$, then $x_1^2 + \ldots + x_n^2 = (x_1 + \ldots + x_n)^2$ for $x_1, \ldots, x_n \in K$. Hence $p(K) = 1$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

Some first observations:

- $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K)$ < 4 (Siegel, 1921),
- $p(\mathbb{R}) = p(\mathbb{C}) = 1$,
- If char $K = 2$, then $x_1^2 + \ldots + x_n^2 = (x_1 + \ldots + x_n)^2$ for $x_1, \ldots, x_n \in K$. Hence $p(K) = 1$.
- If K is a finite field with char $K \neq 2$, then $p(K) = 2$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

If $2 \in K^\times$ and $-1 \in \Sigma_n K^2$, then $K = \Sigma_{n+1} K^2$. In particular, $p(K) \leq n+1$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

If $2 \in K^\times$ and $-1 \in \Sigma_n K^2$, then $K = \Sigma_{n+1} K^2$. In particular, $p(K) \leq n+1$.

Proof.
\nIf
$$
-1 = x_1^2 + ... + x_n^2
$$
 for some $x_1, ..., x_n \in K$, and if $a \in K$ is arbitrary, then
\n
$$
a = \left(\frac{a+1}{2}\right)^2 - \left(\frac{a-1}{2}\right)^2 = \left(\frac{a+1}{2}\right)^2 + \left(x_1\frac{a-1}{2}\right)^2 + ... + \left(x_n\frac{a-1}{2}\right)^2.
$$

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

If $2 \in K^\times$ and $-1 \in \Sigma_n K^2$, then $K = \Sigma_{n+1} K^2$. In particular, $p(K) \leq n+1$.

Proof.
\nIf
$$
-1 = x_1^2 + ... + x_n^2
$$
 for some $x_1, ..., x_n \in K$, and if $a \in K$ is arbitrary, then\n
$$
a = \left(\frac{a+1}{2}\right)^2 - \left(\frac{a-1}{2}\right)^2 = \left(\frac{a+1}{2}\right)^2 + \left(x_1\frac{a-1}{2}\right)^2 + ... + \left(x_n\frac{a-1}{2}\right)^2.
$$

We call a field K *real* if $-1 \not\in \Sigma K^2$ and *nonreal* if $-1 \in \Sigma K^2.$

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0)

[Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

$$
\bullet \ \ p(\mathbb{R}(X))=2,
$$

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,
- \bullet 5 $\leq p(\mathbb{R}(X, Y, Z)) \leq 8.$ In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1,\ldots,X_n)) \leq 2^n$,

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$.
- \bullet 5 $\leq p(\mathbb{R}(X, Y, Z)) \leq 8.$ In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1,\ldots,X_n)) \leq 2^n$,
- (Pourchet, 1971) $p(\mathbb{O}(X)) = 5$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$.
- $5 < p(R(X, Y, Z)) < 8$. In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1,\ldots,X_n)) \leq 2^n$,
- (Pourchet, 1971) $p(\mathbb{O}(X)) = 5$.
- For $n \geq 2$, $n+4 \leq p(\mathbb{Q}(X_1,\ldots,X_n)) \leq 2^{n+1}$ (Coilliot-Thélène; Jannsen, 2016)

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-26-0)

[Examples and basic observations](#page-6-0)

Let us now turn to some examples with function fields.

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$.
- $5 < p(R(X, Y, Z)) < 8$. In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1,\ldots,X_n)) \leq 2^n$,

• (Pourchet, 1971)
$$
p(\mathbb{Q}(X)) = 5
$$
.

For $n \geq 2$, $n+4 \leq p(\mathbb{Q}(X_1,\ldots,X_n)) \leq 2^{n+1}$ (Coilliot-Thélène; Jannsen, 2016)

We also have the following:

Theorem (Hoffmann, 1999)

For every $n \in \mathbb{N}^+ \cup \{\infty\}$, there exists a real field K with $p(K) = n$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-22-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Let K be a real field. What can we say about the growth of $p(L)$ for field extensions $L/K?$

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-22-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Let K be a real field. What can we say about the growth of $p(L)$ for field extensions $L/K?$

We have the following bound for finite extensions (due to Pfister):

 $p(L) < [L : K] p(K).$

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-22-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Let K be a real field. What can we say about the growth of $p(L)$ for field extensions $L/K?$

We have the following bound for finite extensions (due to Pfister):

 $p(L) < [L : K] p(K).$

Question

Does there exist a finite field extension L/K with $p(L) > p(K) + 2$?

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-19-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Let K be a real field. What can we say about the growth of $p(L)$ for field extensions $L/K?$

We have the following bound for finite extensions (due to Pfister):

 $p(L) < [L : K] p(K).$

Question

Does there exist a finite field extension L/K with $p(L) > p(K) + 2$?

In fact, we do not know of any example of a field K where $p(K(X)) > p(K) + 2$, but we nevertheless cannot answer the following:

Question

If K is a field with $p(K) < \infty$, do we have $p(K(X)) < \infty$?

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-19-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, $n \in \mathbb{N}$. The following are equivalent:

- **D** $p(K(X)) \leq 2^{n+1}$,
- $\mathbf{2} \;\; \rho(L) < 2^{n+1}$ for every real finite field extension L/K ,
- $\mathbf{3} \hspace{0.2cm} -1 \in \mathsf{\Sigma}_{2^n}$ L 2 for every nonreal finite field extension L/K.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-19-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, $n \in \mathbb{N}$. The following are equivalent:

$$
\bullet \ \ p(K(X))\leq 2^{n+1},
$$

- $\mathbf{2} \;\; \rho(L) < 2^{n+1}$ for every real finite field extension L/K ,
- $\mathbf{3} \hspace{0.2cm} -1 \in \mathsf{\Sigma}_{2^n}$ L 2 for every nonreal finite field extension L/K.

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Growth of the Pythagoras number](#page-19-0) [Outline of the talk](#page-26-0)

[Growth of the Pythagoras number](#page-19-0)

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, $n \in \mathbb{N}$. The following are equivalent:

$$
\bullet \ \ p(K(X))\leq 2^{n+1},
$$

- $\mathbf{2} \;\; \rho(L) < 2^{n+1}$ for every real finite field extension L/K ,
- $\mathbf{3} \hspace{0.2cm} -1 \in \mathsf{\Sigma}_{2^n}$ L 2 for every nonreal finite field extension L/K.

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a field with $p(K(X)) = 2$. Then $p(L) \leq 5$ for all finite field extensions $L/K(X)$. In particular, $p(K(X, Y)) < 8$.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-35-0)

[Outline of the talk](#page-26-0)

1 The Pythagoras number: definition, basic examples, growth of the Pythagoras number under finite extensions and function fields

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-35-0)

[Outline of the talk](#page-26-0)

- **1** The Pythagoras number: definition, basic examples, growth of the Pythagoras number under finite extensions and function fields
- **2** Pfister forms and upper bounds on the Pythagoras numbers:
	- Why do we know upper bounds for $p(K)$ in many natural cases?
	- Why is this nevertheless a hard problem?

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-35-0)

[Outline of the talk](#page-26-0)

- **1** The Pythagoras number: definition, basic examples, growth of the Pythagoras number under finite extensions and function fields
- **2** Pfister forms and upper bounds on the Pythagoras numbers:
	- Why do we know upper bounds for $p(K)$ in many natural cases?
	- Why is this nevertheless a hard problem?

3 Hereditarily Pythagorean fields:

- How to characterise for a real field K that $p(K(X)) = 2$?
- Examples and constructions of such fields.

[Pfister forms and upper bounds on the Pythagoras numbers](#page-36-0) [Hereditarily Pythagorean fields](#page-46-0) [Valuations and local-global principles](#page-66-0) [Sums of squares](#page-1-0) [Examples and basic observations](#page-6-0) [Outline of the talk](#page-35-0)

[Outline of the talk](#page-26-0)

- **1** The Pythagoras number: definition, basic examples, growth of the Pythagoras number under finite extensions and function fields
- **2** Pfister forms and upper bounds on the Pythagoras numbers:
	- Why do we know upper bounds for $p(K)$ in many natural cases?
	- Why is this nevertheless a hard problem?

3 Hereditarily Pythagorean fields:

- How to characterise for a real field K that $p(K(X)) = 2$?
- Examples and constructions of such fields.
- ⁴ Valuations and local-global principles:
	- Characterising her. pyth. fields with valuations.
	- Bounds on $p(L)$ for $L/K(X)$ finite based on a local-global principle for quadratic forms.

[Pfister forms](#page-30-0)

[Pfister forms](#page-36-0) The property I_n [and Pythagoras numbers](#page-43-0)

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^\times$, we define inductively the *n-fold Pfister form* $\langle\!\langle a_1,\ldots,a_n \rangle\!\rangle_K$ as a quadratic form in 2^n variables:

[Pfister forms](#page-36-0) The property I_n [and Pythagoras numbers](#page-43-0)

[Pfister forms](#page-30-0)

Let always K be a field, char $K \neq 2$. For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^\times$, we define inductively the *n-fold Pfister form* $\langle\!\langle a_1,\ldots,a_n \rangle\!\rangle_K$ as a quadratic form in 2^n variables: $n=0$: $\langle\!\langle \rangle\!\rangle_K (X_1) = X_1^2$,

[Pfister forms](#page-36-0) The property I_n [and Pythagoras numbers](#page-43-0)

[Pfister forms](#page-30-0)

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^\times$, we define inductively the *n-fold Pfister form* $\langle\!\langle a_1,\ldots,a_n \rangle\!\rangle_K$ as a quadratic form in 2^n variables:

$$
\bullet \ \ n=0 \colon \left\langle \! \left\langle \right\rangle \! \right\rangle_K (X_1) = X_1^2,
$$

$$
\begin{array}{l}\n\bullet \; n > 0: \; \langle\!\langle a_1, \ldots, a_n \rangle\!\rangle_K(X_1, \ldots, X_{2^n}) = \\
\langle\!\langle a_1, \ldots, a_{n-1} \rangle\!\rangle_K(X_1, \ldots, X_{2^{n-1}}) - a_n \langle\!\langle a_1, \ldots, a_{n-1} \rangle\!\rangle_K(X_{2^{n-1}+1}, \ldots X_{2^n}).\n\end{array}
$$

[Pfister forms](#page-36-0) The property I_n [and Pythagoras numbers](#page-43-0)

[Pfister forms](#page-30-0)

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^\times$, we define inductively the *n-fold Pfister form* $\langle\!\langle a_1,\ldots,a_n \rangle\!\rangle_K$ as a quadratic form in 2^n variables:

$$
\bullet \ \ n=0 \colon \left\langle \! \left\langle \right\rangle \! \right\rangle_K (X_1) = X_1^2,
$$

$$
\bullet n > 0: \langle\langle a_1,\ldots,a_n\rangle\rangle_K(X_1,\ldots,X_{2^n}) =\\ \langle\langle a_1,\ldots,a_{n-1}\rangle\rangle_K(X_1,\ldots,X_{2^{n-1}}) - a_n \langle\langle a_1,\ldots,a_{n-1}\rangle\rangle_K(X_{2^{n-1}+1},\ldots X_{2^n}).
$$

We will say that K satisfies I_n if every $(n + 1)$ -fold Pfister form over K has a non-trivial zero.

We say that K *satisfies* I_n^* if every finite field extension L/K satisfies I_n .

[Pfister forms](#page-30-0)

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^\times$, we define inductively the *n-fold Pfister form* $\langle\!\langle a_1,\ldots,a_n \rangle\!\rangle_K$ as a quadratic form in 2^n variables:

$$
\bullet \ \ n=0: \ \langle\!\langle \rangle\!\rangle_K(X_1)=X_1^2,
$$

$$
\begin{array}{l}\n\bullet n > 0: \langle\langle a_1, \ldots, a_n \rangle\rangle_K(X_1, \ldots, X_{2^n}) = \\
\langle\langle a_1, \ldots, a_{n-1} \rangle\rangle_K(X_1, \ldots, X_{2^{n-1}}) - a_n \langle\langle a_1, \ldots, a_{n-1} \rangle\rangle_K(X_{2^{n-1}+1}, \ldots X_{2^n}).\n\end{array}
$$

We will say that K satisfies I_n if every $(n + 1)$ -fold Pfister form over K has a non-trivial zero.

We say that K *satisfies* I_n^* if every finite field extension L/K satisfies I_n . Examples (always characteristic not 2):

- algebraically closed fields satify I_0^* ,
- finite fields satisfy I_1^* ,
- non-real global fields satisfy I_2^* (e.g. by Hasse-Minkowski).

[Pfister forms](#page-36-0)

The property I_n [and Pythagoras numbers](#page-43-0)

[Pfister forms](#page-30-0)

[Pfister forms](#page-36-0) The property I_n [and Pythagoras numbers](#page-43-0)

Theorem

Suppose that K satisfies I_n^* . Then $K(X)$ satisfies I_{n+1}^* .
[Pfister forms](#page-40-0) The property I_n [and Pythagoras numbers](#page-43-0)

[Pfister forms](#page-30-0)

Theorem

Suppose that K satisfies I_n^* . Then $K(X)$ satisfies I_{n+1}^* .

Proof idea.

As a consequence to Voevodsky's solution to the Milnor Conjecture (2003), we have that

K satisfies
$$
I_n^* \Leftrightarrow \text{cd}_2(K) \leq n
$$

where $cd_2(K)$ denotes the 2-cohomological dimension of K.

It is a standard result from Galois cohomology that $\text{cd}_2(K(X)) \leq \text{cd}_2(K) + 1$ **.**

П

[Pfister forms](#page-40-0) The property I_n [and Pythagoras numbers](#page-43-0)

The property I_n [and Pythagoras numbers](#page-37-0)

Theorem (Pfister, Elman-Lam, '90ies)

If K(√ $\overline{-1}$) satisfies I_n, then $p(K) \leq 2^n$.

[Pfister forms](#page-40-0) The property I_n [and Pythagoras numbers](#page-43-0)

The property I_n [and Pythagoras numbers](#page-37-0)

Theorem (Pfister, Elman-Lam, '90ies)

If K(√ $\overline{-1}$) satisfies I_n, then $p(K) \leq 2^n$.

Applications:

- (Pfister, 1970) $p(\mathbb{R}(X_1, ..., X_n)) \leq 2^n$,
- $p(Q(X_1,...,X_n)) \leq 2^{n+2}$.

[Pfister forms](#page-40-0) The property I_n [and Pythagoras numbers](#page-43-0)

The property I_n [and Pythagoras numbers](#page-37-0)

Theorem (Pfister, Elman-Lam, '90ies)

If K(√ $\overline{-1}$) satisfies I_n, then $p(K) \leq 2^n$.

Applications:

- (Pfister, 1970) $p(\mathbb{R}(X_1, ..., X_n)) \leq 2^n$,
- $p(Q(X_1,...,X_n)) \leq 2^{n+2}$.

Conclusion: the well-behavedness of $p(K(X_1, ..., X_n))$ for $K = \mathbb{R}$ or $K = \mathbb{Q}$ comes from the well-behavedness of the property I_n^* . What if K does not satisfy I_n^* for any n?

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K pythagorean if $p(K) = 1$. We call a real field K hereditarily pythagorean if $p(L) = 1$ for every finite real extension L/K .

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K pythagorean if $p(K) = 1$. We call a real field K hereditarily pythagorean if $p(L) = 1$ for every finite real extension L/K . Equivalently (see Theorem earlier on), a real field K is hereditarily pythagorean if $p(K(X)) = 2$. We want to prove:

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then $p(L) \leq 5$ for all finite field extensions $L/K(X)$. In particular, $p(K(X, Y)) < 8$.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K pythagorean if $p(K) = 1$. We call a real field K hereditarily pythagorean if $p(L) = 1$ for every finite real extension L/K . Equivalently (see Theorem earlier on), a real field K is hereditarily pythagorean if $p(K(X)) = 2$. We want to prove:

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then $p(L) \leq 5$ for all finite field extensions $L/K(X)$. In particular, $p(K(X, Y)) < 8$.

We will first look at some special cases.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean. √

Equivalently, K is hereditarily euclidean if and only if K is real and $K(\mathbb{R})$ $\overline{-1})$ satisfies $\mathit{l}_{0}^{\ast}.$

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean. √

Equivalently, K is hereditarily euclidean if and only if K is real and $K(\mathbb{R})$ $\overline{-1})$ satisfies $\mathit{l}_{0}^{\ast}.$ Example: $\mathbb R$ is hereditarily euclidean.

[Pythagorean and euclidean fields](#page-48-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Pythagorean and euclidean fields](#page-40-0)

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean. √

Equivalently, K is hereditarily euclidean if and only if K is real and $K(\mathbb{R})$ $\overline{-1})$ satisfies $\mathit{l}_{0}^{\ast}.$ Example: $\mathbb R$ is hereditarily euclidean.

If K is hereditarily euclidean, then K is hereditarily pythagorean. Furthermore, one has that $K(\sqrt{-1})(X,Y)$ is l_2^* , hence $\rho(L) \leq 3$ for any finite field extension $L/K(X).$

[Pythagorean and euclidean fields](#page-48-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

For a field K , we may consider the field of formal Laurent series

$$
K((\mathcal{T})) = \left\{ \sum_{j=N}^{+\infty} a_j \mathcal{T}^i \mid N \in \mathbb{Z}, a_i \in K \right\}.
$$

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

For a field K , we may consider the field of formal Laurent series

$$
K((\mathcal{T})) = \left\{ \sum_{j=N}^{+\infty} a_j \mathcal{T}^i \mid N \in \mathbb{Z}, a_i \in K \right\}.
$$

Proposition

Suppose K is hereditarily Pythagorean. Then $K((T))$ is hereditarily Pythagorean.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

For a field K , we may consider the field of formal Laurent series

$$
K((\mathcal{T})) = \left\{ \sum_{j=N}^{+\infty} a_j \mathcal{T}^i \mid N \in \mathbb{Z}, a_i \in K \right\}.
$$

Proposition

Suppose K is hereditarily Pythagorean. Then $K((T))$ is hereditarily Pythagorean.

Proof idea.

Let $L/K((T))$ be a real finite field extension.

- \bullet L carries a complete discrete valuation v whose residue field Lv is a finite extension of K , hence pythagorean.
- By Hensel's Lemma, also L is pythagorean.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

We can now give examples of fields K which are hereditarily pythagorean, but for which $\mathcal{K}(\sqrt{-1})$ does not satisfy I_n :

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

We can now give examples of fields K which are hereditarily pythagorean, but for which $\mathcal{K}(\sqrt{-1})$ does not satisfy I_n :

 $K_n = \mathbb{R}((T_1)) \dots ((T_n))$ is hereditarily pythagorean, but $\mathcal{K}_n(\sqrt{-1})=\mathbb{C}((\mathcal{T}_1))\ldots((\mathcal{T}_n))$ is not I_m for $m < n$.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

We can now give examples of fields K which are hereditarily pythagorean, but for which $\mathcal{K}(\sqrt{-1})$ does not satisfy I_n :

- $K_n = \mathbb{R}((T_1)) \dots ((T_n))$ is hereditarily pythagorean, but $\mathcal{K}_n(\sqrt{-1})=\mathbb{C}((\mathcal{T}_1))\ldots((\mathcal{T}_n))$ is not I_m for $m < n$.
- Consequently, $K = \bigcup_{n \in \mathbb{N}} K_n$ is hereditarily pythagorean, but not I_m for any $m \in \mathbb{N}$.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-55-0) [Hereditarily half-euclidean fields](#page-60-0)

[Formal Laurent series](#page-47-0)

We can now give examples of fields K which are hereditarily pythagorean, but for which $\mathcal{K}(\sqrt{-1})$ does not satisfy I_n :

- $K_n = \mathbb{R}((T_1)) \dots ((T_n))$ is hereditarily pythagorean, but $\mathcal{K}_n(\sqrt{-1})=\mathbb{C}((\mathcal{T}_1))\ldots((\mathcal{T}_n))$ is not I_m for $m < n$.
- Consequently, $K = \bigcup_{n \in \mathbb{N}} K_n$ is hereditarily pythagorean, but not I_m for any $m \in \mathbb{N}$.
- Nevertheless, in the above setup, (Becher, Grimm, Van Geel, 2012) $p(K(X, Y)) \leq 4.$

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-55-0) [Hereditarily half-euclidean fields](#page-60-0)

[Hereditarily half-euclidean fields](#page-54-0)

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Hereditarily half-euclidean fields](#page-54-0)

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We call a real field K hereditarily half-euclidean if every real finite field extension is half-euclidean.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Hereditarily half-euclidean fields](#page-54-0)

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We call a real field K hereditarily half-euclidean if every real finite field extension is half-euclidean.

Example: Let \leq_1 and \leq_2 be the two orderings on ${\mathbb Q}(\sqrt{2})$ $\mathbb{Q}(\sqrt{2})$. By Zorn's Lemma, there exists a maximal algebraic extension $\mathcal K$ of $\mathbb Q(\sqrt{2})$ subject to the condition that \leq_1 and \leq extend to K. Then K is hereditarily half-euclidean.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Hereditarily half-euclidean fields](#page-54-0)

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We call a real field K hereditarily half-euclidean if every real finite field extension is half-euclidean.

Example: Let \leq_1 and \leq_2 be the two orderings on ${\mathbb Q}(\sqrt{2})$ $\mathbb{Q}(\sqrt{2})$. By Zorn's Lemma, there exists a maximal algebraic extension $\mathcal K$ of $\mathbb Q(\sqrt{2})$ subject to the condition that \leq_1 and \leq extend to K. Then K is hereditarily half-euclidean.

If K is hereditarily half-euclidean, then $K($ √ $\overline{-1})$ is l_1^\ast , hence $\rho(L) \leq 4$ for all finite field extensions $L/K(X)$.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Hereditarily half-euclidean fields](#page-54-0)

In summary, we have the following examples/constructions of hereditarily pythagorean fields:

- **•** hereditarily euclidean fields,
- hereditarily half-euclidean fields,
- if K is hereditarily pythagorean, then so is $K((T))$.

[Pythagorean and euclidean fields](#page-46-0) [Formal Laurent series](#page-53-0) [Hereditarily half-euclidean fields](#page-60-0)

[Hereditarily half-euclidean fields](#page-54-0)

In summary, we have the following examples/constructions of hereditarily pythagorean fields:

- **•** hereditarily euclidean fields,
- hereditarily half-euclidean fields,
- if K is hereditarily pythagorean, then so is $K((T))$.

In fact, we will see now that this almost covers all examples ...

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

For a field $K¹$

• A *valuation on* K is a group epimorphism

$$
v: K^\times \twoheadrightarrow vK
$$

where vK is an ordered abelian group (called the value group of v), such that $v(x + y) \ge \max\{v(x), v(y)\}\$ for $x, y \in K$ with $x + y \ne 0$.

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

For a field $K¹$

• A *valuation on* K is a group epimorphism

$$
v: K^\times \twoheadrightarrow vK
$$

where vK is an ordered abelian group (called the value group of v), such that $v(x + y)$ > max{ $v(x)$, $v(y)$ } for $x, y \in K$ with $x + y \neq 0$.

• Given a valuation v on K , we call:

•
$$
\mathcal{O}_v = \{ x \in K^\times \mid v(x) \ge 0 \} \cup \{ 0 \}
$$
 the valuation ring of v,

•
$$
\mathfrak{m}_v = \{x \in K^\times \mid v(x) > 0\} \cup \{0\}
$$
 the valuation ideal of v ,

•
$$
Kv = \mathcal{O}_v / \mathfrak{m}_v
$$
 the residue field of v,

• the number $rk(v)$ of proper convex subgroups of vK the rank of v.

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

For a field $K¹$

• A *valuation on* K is a group epimorphism

$$
v: K^\times \twoheadrightarrow vK
$$

where vK is an ordered abelian group (called the value group of v), such that $v(x + y)$ > max{ $v(x)$, $v(y)$ } for $x, y \in K$ with $x + y \neq 0$.

• Given a valuation v on K , we call:

•
$$
\mathcal{O}_v = \{x \in K^\times \mid v(x) \ge 0\} \cup \{0\} \text{ the valuation ring of } v,
$$

•
$$
\mathfrak{m}_v = \{ x \in K^\times \mid v(x) > 0 \} \cup \{ 0 \}
$$
 the valuation ideal of v ,

•
$$
Kv = \mathcal{O}_v / \mathfrak{m}_v
$$
 the residue field of v,

- the number $rk(v)$ of proper convex subgroups of vK the rank of v.
- \bullet We call a valuation v on K
	- *complete* if the induced field topology is complete,
	- \bullet henselian if v extends uniquely to every finite field extension of K.

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

Example: let K_0 be any field, consider the field $K = K_0((T))$ and define the map

$$
v_{\mathcal{T}}: K^{\times} \to \mathbb{Z}: \sum_{j=N}^{+\infty} a_j \mathcal{T}^j \mapsto \min\{j \in \mathbb{Z} \mid a_j \neq 0\}.
$$

This is a complete, henselian valuation of rank 1 with residue field K_0 .

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

Proposition

Let K be a field, v a henselian valuation on K with char $Kv \neq 2$. Then one of the following occurs:

- $p(K) = p(Kv)$,
- $p(K)=p(Kv)+1$, $-1\in \mathsf{\Sigma}_{p(K)}$ K 2 and $-1\in \mathsf{\Sigma}_{p(K)}$ (Kv) 2 .

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

Proposition

Let K be a field, v a henselian valuation on K with char $Kv \neq 2$. Then one of the following occurs:

- $p(K) = p(Kv)$,
- $p(K)=p(Kv)+1$, $-1\in \mathsf{\Sigma}_{p(K)}$ K 2 and $-1\in \mathsf{\Sigma}_{p(K)}$ (Kv) 2 .

In particular, we obtain a generalisation of the observation that if K is hereditarily pythagorean, then so is $K((T))$:

Corollary

Let K be a field, v a henselian valuation on K. If Kv is hereditarily pythagorean, then so is K.

[Henselian valuations](#page-68-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Henselian valuations](#page-60-0)

The promised classification of hereditarily pythagorean fields:

Theorem (Bröcker, 1976)

A field K is hereditarily pythagorean if and only if there exists a henselian valuation v on K whose residue field is hereditarily euclidean or hereditarily half-euclidean.

[Henselian valuations](#page-68-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Mehmeti's local-global principle](#page-67-0)

Theorem (Mehmeti, 2019)

Let K be a field with char $K \neq 2$ and with a complete rank 1 valuation v. Let $L/K(X)$ be a finite field extension. Let $q(X_1, \ldots, X_n)$ be a quadratic form over L for some $n > 3$.

If q has a non-trivial zero over every completion L^w where w is a rank 1 valuation on L with either $w|_K = 0$ or $w|_K = v$, then q has a non-trivial zero over L.

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Mehmeti's local-global principle](#page-67-0)

Theorem (Mehmeti, 2019)

Let K be a field with char $K \neq 2$ and with a complete rank 1 valuation v. Let $L/K(X)$ be a finite field extension. Let $q(X_1, \ldots, X_n)$ be a quadratic form over L for some $n > 3$.

If q has a non-trivial zero over every completion L^w where w is a rank 1 valuation on L with either $w|_K = 0$ or $w|_K = v$, then q has a non-trivial zero over L.

In particular:

Corollary

Let K be a field with a complete rank 1 valuation v. Let $L/K(X)$ be a finite field extension. We have

 $p(L) = \sup\{p(L^w) \mid w \text{ rank } 1 \text{ valuation on } F \text{ with } w|_K = 0 \text{ or } w|_K = v\}.$

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Proof of main theorem](#page-69-0)

To prove

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then $p(L) \leq 5$ for all finite field extensions $L/K(X)$. In particular, $p(K(X, Y)) < 8$.

note that we have the following:

- \bullet The theorem holds when K is hereditarily euclidean.
- \bullet The theorem holds when K is hereditarily half-euclidean.
- (Bröcker) In general, K carries a henselian valuation whose residue field is hereditarily euclidean of hereditarily half-euclidean.

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Proof of main theorem](#page-69-0)

We are thus done if we prove the following:

Theorem

Let $n \in \mathbb{N}$ not a power of 2 and consider the following property for a field K:

For every field field extension $L/K(X)$ we have $p(L) \leq n$. (1)

If a field K carries a henselian valuation v whose residue field Kv satisfies (1) and char $Kv \neq 2$, then K satisfies [\(1\)](#page-70-0).

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Proof of main theorem](#page-69-0)

Proof idea.

We prove this in multiple steps:

 \bullet v is complete of rank one: This case follows from Mehmeti's local-global principle.

П
[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Proof of main theorem](#page-69-0)

Proof idea.

We prove this in multiple steps:

- \bullet v is complete of rank one: This case follows from Mehmeti's local-global principle.
- 2 v is henselian of rank one: Mehmeti's local-global principle can be extended to this situation by standard arguments.

П

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-74-0) [Proof of main theorem](#page-75-0)

[Proof of main theorem](#page-69-0)

Proof idea.

We prove this in multiple steps:

- \bullet v is complete of rank one: This case follows from Mehmeti's local-global principle.
- 2 v is henselian of rank one: Mehmeti's local-global principle can be extended to this situation by standard arguments.
- ³ v is henselian of finite rank: Apply induction on the rank.

m

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0)

[Proof of main theorem](#page-69-0)

Proof idea.

We prove this in multiple steps:

- \bullet v is complete of rank one: This case follows from Mehmeti's local-global principle.
- 2 v is henselian of rank one: Mehmeti's local-global principle can be extended to this situation by standard arguments.
- ³ v is henselian of finite rank: Apply induction on the rank.
- $\bullet\,\mathsf{v}\,$ is henselian of arbitrary rank: By a limit argument, reduce to considering everything over some subfield of K of finite transcendence degree and hence finite rank.

П

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0) **[Outlook](#page-0-0)**

[Outlook](#page-75-0)

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0) [Outlook](#page-0-0)

[Outlook](#page-75-0)

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

- Can we show $p(K(X)) \leq 4 \Rightarrow p(K(X, Y)) < \infty$?
- Can we show $p(K(X)) = 2 \Rightarrow p(K(X, Y, Z)) < \infty$?
- Can we find a more elementary proof that $p(K(X)) = 2 \Rightarrow p(K(X, Y)) \leq 8$?

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0) [Outlook](#page-0-0)

[Outlook](#page-75-0)

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

- Can we show $p(K(X)) \leq 4 \Rightarrow p(K(X, Y)) \leq \infty$?
- Can we show $p(K(X)) = 2 \Rightarrow p(K(X, Y, Z)) < \infty$?
- Can we find a more elementary proof that $p(K(X)) = 2 \Rightarrow p(K(X, Y)) < 8$?

Conjecture

If $p(K(X)) = 2$, then $p(L) \leq 3$ for every finite field extension $L/K(X)$. In particular, $p(K(X, Y)) < 4.$

[Henselian valuations](#page-66-0) [Mehmeti's local-global principle](#page-73-0) [Proof of main theorem](#page-75-0) [Outlook](#page-0-0)

[Outlook](#page-75-0)

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

- Can we show $p(K(X)) \leq 4 \Rightarrow p(K(X, Y)) \leq \infty$?
- Can we show $p(K(X)) = 2 \Rightarrow p(K(X, Y, Z)) < \infty$?
- Can we find a more elementary proof that $p(K(X)) = 2 \Rightarrow p(K(X, Y)) \leq 8$?

Conjecture

If $p(K(X)) = 2$, then $p(L) \leq 3$ for every finite field extension $L/K(X)$. In particular, $p(K(X, Y)) < 4.$

In view of the previous theorem, in order to prove this conjecture, it suffices to prove it when K is hereditarily half-euclidean.

[1] K.J. Becher, N. Daans, D. Grimm, G. Manzano-Flores, M. Zaninelli.

The Pythagoras number of a Rational Function Field in two variables.

preprint available as <arXiv:2302.11423> (2023).

[2] K.J. Becher, J. Van Geel.

Sums of squares in function fields of hyperelliptic curves

Math. Z. 261 (2009), 829-844.

[3] L. Bröcker.

Characterization of Fans and Hereditarily Pythagorean Fields.

Math. Z. 151 (1976): 149-164.

[4] D.W. Hoffmann.

Pythagoras number of fields J. Am. Math. Soc. 12 (1999): 839-848. [5] U. Jannsen.

Hasse principles for higher-dimensional fields. Ann. of Math. 183 (2016), 1-71.

[6] V. Mehmeti.

Patching over Berkovich curves and quadratic forms. Comp. Math. 155 (2019), 2399-2438.

[7] A. Pfister.

Quadratic forms with applications to algebraic geometry and topology.

London Mathematical Society Lecture Note Series 217, Cambridge University Press, 1995.

[8] V. Voevodsky.

Motivic cohomology with $\mathbb{Z}/2$ -coefficients. Publ. Math. Inst. Hautes Études Sci. 98

(2003), 59-104.

Thanks for your attention!

Nicolas Daans E-mail: <nicolas.daans@matfyz.cuni.cz>