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Sums of squares

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

Corollary (Euler, < 1750)

Every positive rational number is a sum of 4 squares of rational numbers.

We want to interpret these results as describing the value of an invariant associated to
the rings Z and Q.
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Sums of squares

For a commutative ring K and n ∈ N, define:

ΣnK
2 = {x2

1 + . . . + x2
n | x1, . . . , xn ∈ K}

ΣK 2 =
⋃
n∈N

ΣnK
2

p(K ) = inf{n ∈ N | ΣK 2 = ΣnK
2} ∈ N ∪ {∞}.

We call p(K ) the Pythagoras number of K . We will focus on the case where K is a
field.
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Examples and basic observations

Some first observations:

p(Q) = p(Z) = 4 (Euler, Lagrange). In fact, when K is a number field, then
p(K ) ≤ 4 (Siegel, 1921),

p(R) = p(C) = 1,

If charK = 2, then x2
1 + . . . + x2

n = (x1 + . . . + xn)2 for x1, . . . , xn ∈ K .
Hence p(K ) = 1.

If K is a finite field with charK 6= 2, then p(K ) = 2.
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Examples and basic observations

If 2 ∈ K× and −1 ∈ ΣnK
2, then K = Σn+1K

2. In particular, p(K ) ≤ n + 1.

Proof.

If −1 = x2
1 + . . . + x2

n for some x1, . . . , xn ∈ K , and if a ∈ K is arbitrary, then

a =

(
a + 1

2

)2

−
(
a− 1

2

)2

=

(
a + 1

2

)2

+

(
x1

a− 1

2

)2

+ . . . +

(
xn

a− 1

2

)2

.

We call a field K real if −1 6∈ ΣK 2 and nonreal if −1 ∈ ΣK 2.
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Examples and basic observations

Let us now turn to some examples with function fields.

p(R(X )) = 2,

p(R(X ,Y )) = 4,

5 ≤ p(R(X ,Y ,Z )) ≤ 8.
In general, for n ≥ 2, n + 2 ≤ p(R(X1, . . . ,Xn)) ≤ 2n,

(Pourchet, 1971) p(Q(X )) = 5.

For n ≥ 2, n + 4 ≤ p(Q(X1, . . . ,Xn)) ≤ 2n+1 (Coilliot-Thélène; Jannsen, 2016)

We also have the following:

Theorem (Hoffmann, 1999)

For every n ∈ N+ ∪ {∞}, there exists a real field K with p(K ) = n.
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Growth of the Pythagoras number

Let K be a real field. What can we say about the growth of p(L) for field extensions
L/K?

We have the following bound for finite extensions (due to Pfister):

p(L) ≤ [L : K ]p(K ).

Question

Does there exist a finite field extension L/K with p(L) > p(K ) + 2?

In fact, we do not know of any example of a field K where p(K (X )) > p(K ) + 2, but
we nevertheless cannot answer the following:

Question

If K is a field with p(K ) <∞, do we have p(K (X )) <∞?
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Growth of the Pythagoras number

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, n ∈ N. The following are equivalent:

1 p(K (X )) ≤ 2n+1,

2 p(L) < 2n+1 for every real finite field extension L/K ,

3 −1 ∈ Σ2nL
2 for every nonreal finite field extension L/K .

Conjecture

If K is a field and p(K (X )) <∞, then p(K (X ,Y )) <∞.

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a field with p(K (X )) = 2. Then p(L) ≤ 5 for all finite field extensions
L/K (X ). In particular, p(K (X ,Y )) ≤ 8.
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Outline of the talk

1 The Pythagoras number: definition, basic examples, growth of the Pythagoras
number under finite extensions and function fields

2 Pfister forms and upper bounds on the Pythagoras numbers:
Why do we know upper bounds for p(K ) in many natural cases?
Why is this nevertheless a hard problem?

3 Hereditarily Pythagorean fields:
How to characterise for a real field K that p(K (X )) = 2?
Examples and constructions of such fields.

4 Valuations and local-global principles:
Characterising her. pyth. fields with valuations.
Bounds on p(L) for L/K (X ) finite based on a local-global principle for quadratic
forms.
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Pfister forms
The property In and Pythagoras numbers

Pfister forms

Let always K be a field, charK 6= 2.
For n ∈ N and a1, . . . , an ∈ K×, we define inductively the n-fold Pfister form
〈〈a1, . . . , an〉〉K as a quadratic form in 2n variables:

n = 0: 〈〈〉〉K (X1) = X 2
1 ,

n > 0: 〈〈a1, . . . , an〉〉K (X1, . . . ,X2n) =
〈〈a1, . . . , an−1〉〉K (X1, . . . ,X2n−1)− an〈〈a1, . . . , an−1〉〉K (X2n−1+1, . . .X2n).

We will say that K satisfies In if every (n + 1)-fold Pfister form over K has a
non-trivial zero.
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Pfister forms

Theorem

Suppose that K satisfies I ∗n . Then K (X ) satisfies I ∗n+1.

Proof idea.

As a consequence to Voevodsky’s solution to the Milnor Conjecture (2003), we
have that

K satisfies I ∗n ⇔ cd2(K ) ≤ n

where cd2(K ) denotes the 2-cohomological dimension of K .

It is a standard result from Galois cohomology that cd2(K (X )) ≤ cd2(K ) + 1.
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The property In and Pythagoras numbers

Theorem (Pfister, Elman-Lam, ’90ies)

If K (
√
−1) satisfies In, then p(K ) ≤ 2n.

Applications:

(Pfister, 1970) p(R(X1, . . . ,Xn)) ≤ 2n,

p(Q(X1, . . . ,Xn)) ≤ 2n+2.

Conclusion: the well-behavedness of p(K (X1, . . . ,Xn)) for K = R or K = Q comes
from the well-behavedness of the property I ∗n .
What if K does not satisfy I ∗n for any n?
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Pythagorean and euclidean fields

We call a real field K pythagorean if p(K ) = 1. We call a real field K hereditarily
pythagorean if p(L) = 1 for every finite real extension L/K .

Equivalently (see Theorem earlier on), a real field K is hereditarily pythagorean if
p(K (X )) = 2. We want to prove:

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then p(L) ≤ 5 for all finite field extensions
L/K (X ). In particular, p(K (X ,Y )) ≤ 8.

We will first look at some special cases.
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Pythagorean and euclidean fields

We call a real field K euclidean if every element of K is either a square or minus a
square. We call a real field K hereditarily euclidean if every finite real extension of K is
euclidean.

Equivalently, K is hereditarily euclidean if and only if K is real and K (
√
−1) satisfies I ∗0 .

Example: R is hereditarily euclidean.

If K is hereditarily euclidean, then K is hereditarily pythagorean. Furthermore, one has
that K (

√
−1)(X ,Y ) is I ∗2 , hence p(L) ≤ 3 for any finite field extension L/K (X ).
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Formal Laurent series

For a field K , we may consider the field of formal Laurent series

K ((T )) =


+∞∑
j=N

aiT
i

∣∣∣∣∣∣ N ∈ Z, ai ∈ K

 .

Proposition

Suppose K is hereditarily Pythagorean. Then K ((T )) is hereditarily Pythagorean.

Proof idea.

Let L/K ((T )) be a real finite field extension.

L carries a complete discrete valuation v whose residue field Lv is a finite
extension of K , hence pythagorean.

By Hensel’s Lemma, also L is pythagorean.
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Formal Laurent series

We can now give examples of fields K which are hereditarily pythagorean, but for
which K (

√
−1) does not satisfy In:

Kn = R((T1)) . . . ((Tn)) is hereditarily pythagorean, but
Kn(
√
−1) = C((T1)) . . . ((Tn)) is not Im for m < n.

Consequently, K =
⋃

n∈N Kn is hereditarily pythagorean, but not Im for any
m ∈ N.

Nevertheless, in the above setup, (Becher, Grimm, Van Geel, 2012)
p(K (X ,Y )) ≤ 4.
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Hereditarily half-euclidean fields

Note: by Artin’s Theorem, a field K is euclidean if and only if it is pythagorean and
has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We
call a real field K hereditarily half-euclidean if every real finite field extension is
half-euclidean.

Example: Let ≤1 and ≤2 be the two orderings on Q(
√

2). By Zorn’s Lemma, there
exists a maximal algebraic extension K of Q(

√
2) subject to the condition that ≤1 and

≤2 extend to K . Then K is hereditarily half-euclidean.

If K is hereditarily half-euclidean, then K (
√
−1) is I ∗1 , hence p(L) ≤ 4 for all finite field

extensions L/K (X ).
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Hereditarily half-euclidean fields

In summary, we have the following examples/constructions of hereditarily pythagorean
fields:

hereditarily euclidean fields,

hereditarily half-euclidean fields,

if K is hereditarily pythagorean, then so is K ((T )).

In fact, we will see now that this almost covers all examples ...
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hereditarily euclidean fields,

hereditarily half-euclidean fields,

if K is hereditarily pythagorean, then so is K ((T )).

In fact, we will see now that this almost covers all examples ...
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Henselian valuations

For a field K :

A valuation on K is a group epimorphism

v : K× � vK

where vK is an ordered abelian group (called the value group of v), such that
v(x + y) ≥ max{v(x), v(y)} for x , y ∈ K with x + y 6= 0.

Given a valuation v on K , we call:

Ov = {x ∈ K× | v(x) ≥ 0} ∪ {0} the valuation ring of v ,
mv = {x ∈ K× | v(x) > 0} ∪ {0} the valuation ideal of v ,
Kv = Ov/mv the residue field of v ,
the number rk(v) of proper convex subgroups of vK the rank of v .

We call a valuation v on K

complete if the induced field topology is complete,
henselian if v extends uniquely to every finite field extension of K .
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Henselian valuations

Example: let K0 be any field, consider the field K = K0((T )) and define the map

vT : K× → Z :
+∞∑
j=N

ajT
j 7→ min{j ∈ Z | aj 6= 0}.

This is a complete, henselian valuation of rank 1 with residue field K0.
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Henselian valuations

Proposition

Let K be a field, v a henselian valuation on K with charKv 6= 2. Then one of the
following occurs:

p(K ) = p(Kv),

p(K ) = p(Kv) + 1, −1 ∈ Σp(K)K
2 and −1 ∈ Σp(K)(Kv)2.

In particular, we obtain a generalisation of the observation that if K is hereditarily
pythagorean, then so is K ((T )):

Corollary

Let K be a field, v a henselian valuation on K . If Kv is hereditarily pythagorean, then
so is K .
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Henselian valuations

The promised classification of hereditarily pythagorean fields:

Theorem (Bröcker, 1976)

A field K is hereditarily pythagorean if and only if there exists a henselian valuation v
on K whose residue field is hereditarily euclidean or hereditarily half-euclidean.
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Mehmeti’s local-global principle

Theorem (Mehmeti, 2019)

Let K be a field with charK 6= 2 and with a complete rank 1 valuation v . Let L/K (X )
be a finite field extension. Let q(X1, . . . ,Xn) be a quadratic form over L for some
n ≥ 3.
If q has a non-trivial zero over every completion Lw where w is a rank 1 valuation on L
with either w |K = 0 or w |K = v , then q has a non-trivial zero over L.

In particular:

Corollary

Let K be a field with a complete rank 1 valuation v . Let L/K (X ) be a finite field
extension. We have

p(L) = sup{p(Lw ) | w rank 1 valuation on F with w |K = 0 or w |K = v}.
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Proof of main theorem

To prove

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then p(L) ≤ 5 for all finite field extensions
L/K (X ). In particular, p(K (X ,Y )) ≤ 8.

note that we have the following:

The theorem holds when K is hereditarily euclidean.

The theorem holds when K is hereditarily half-euclidean.

(Bröcker) In general, K carries a henselian valuation whose residue field is
hereditarily euclidean of hereditarily half-euclidean.
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Proof of main theorem

We are thus done if we prove the following:

Theorem

Let n ∈ N not a power of 2 and consider the following property for a field K :

For every field field extension L/K (X ) we have p(L) ≤ n. (1)

If a field K carries a henselian valuation v whose residue field Kv satisfies (1) and
charKv 6= 2, then K satisfies (1).
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Proof of main theorem

Proof idea.

We prove this in multiple steps:

1 v is complete of rank one: This case follows from Mehmeti’s local-global principle.

2 v is henselian of rank one: Mehmeti’s local-global principle can be extended to
this situation by standard arguments.

3 v is henselian of finite rank: Apply induction on the rank.

4 v is henselian of arbitrary rank: By a limit argument, reduce to considering
everything over some subfield of K of finite transcendence degree and hence finite
rank.

Nicolas Daans The Pythagoras number of function fields



The Pythagoras number
Pfister forms and upper bounds on the Pythagoras numbers

Hereditarily Pythagorean fields
Valuations and local-global principles

Henselian valuations
Mehmeti’s local-global principle
Proof of main theorem
Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

1 v is complete of rank one: This case follows from Mehmeti’s local-global principle.

2 v is henselian of rank one: Mehmeti’s local-global principle can be extended to
this situation by standard arguments.

3 v is henselian of finite rank: Apply induction on the rank.

4 v is henselian of arbitrary rank: By a limit argument, reduce to considering
everything over some subfield of K of finite transcendence degree and hence finite
rank.

Nicolas Daans The Pythagoras number of function fields



The Pythagoras number
Pfister forms and upper bounds on the Pythagoras numbers

Hereditarily Pythagorean fields
Valuations and local-global principles

Henselian valuations
Mehmeti’s local-global principle
Proof of main theorem
Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

1 v is complete of rank one: This case follows from Mehmeti’s local-global principle.

2 v is henselian of rank one: Mehmeti’s local-global principle can be extended to
this situation by standard arguments.

3 v is henselian of finite rank: Apply induction on the rank.

4 v is henselian of arbitrary rank: By a limit argument, reduce to considering
everything over some subfield of K of finite transcendence degree and hence finite
rank.

Nicolas Daans The Pythagoras number of function fields



The Pythagoras number
Pfister forms and upper bounds on the Pythagoras numbers

Hereditarily Pythagorean fields
Valuations and local-global principles

Henselian valuations
Mehmeti’s local-global principle
Proof of main theorem
Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

1 v is complete of rank one: This case follows from Mehmeti’s local-global principle.

2 v is henselian of rank one: Mehmeti’s local-global principle can be extended to
this situation by standard arguments.

3 v is henselian of finite rank: Apply induction on the rank.

4 v is henselian of arbitrary rank: By a limit argument, reduce to considering
everything over some subfield of K of finite transcendence degree and hence finite
rank.

Nicolas Daans The Pythagoras number of function fields



The Pythagoras number
Pfister forms and upper bounds on the Pythagoras numbers

Hereditarily Pythagorean fields
Valuations and local-global principles

Henselian valuations
Mehmeti’s local-global principle
Proof of main theorem
Outlook

Outlook

What’s next?

Conjecture

If K is a field and p(K (X )) <∞, then p(K (X ,Y )) <∞.

Can we show p(K (X )) ≤ 4⇒ p(K (X ,Y )) <∞?

Can we show p(K (X )) = 2⇒ p(K (X ,Y ,Z )) <∞?

Can we find a more elementary proof that p(K (X )) = 2⇒ p(K (X ,Y )) ≤ 8?

Conjecture

If p(K (X )) = 2, then p(L) ≤ 3 for every finite field extension L/K (X ). In particular,
p(K (X ,Y )) ≤ 4.

In view of the previous theorem, in order to prove this conjecture, it suffices to prove it
when K is hereditarily half-euclidean.
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