Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

The Pythagoras number of function fields Seminar on Arithmetic Geometry and Algebraic Groups

Nicolas Daans

joint work with Karim Becher, David Grimm, Gonzalo Manzano-Flores, Marco Zaninelli

Charles University, Faculty of Mathematics and Physics, Department of Algebra

24 April 2023

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles

Sums of squares

Sums of squares Examples and basic observations Growth of the Pythagoras numb Outline of the talk

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles

Sums of squares

Sums of squares Examples and basic observations Growth of the Pythagoras numbe Outline of the talk

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

Corollary (Euler, < 1750)

Every positive rational number is a sum of 4 squares of rational numbers.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles

Sums of squares

Sums of squares Examples and basic observations Growth of the Pythagoras numbe Outline of the talk

Theorem (Lagrange, ca. 1770)

Every natural number is a sum of 4 squares of natural numbers.

Corollary (Euler, < 1750)

Every positive rational number is a sum of 4 squares of rational numbers.

We want to interpret these results as describing the value of an invariant associated to the rings $\mathbb Z$ and $\mathbb Q.$

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles

Sums of squares

Sums of squares Examples and basic observations Growth of the Pythagoras numbe Outline of the talk

For a commutative ring *K* and $n \in \mathbb{N}$, define:

$$\Sigma_n \mathcal{K}^2 = \{x_1^2 + \ldots + x_n^2 \mid x_1, \ldots, x_n \in \mathcal{K}\}$$
$$\Sigma \mathcal{K}^2 = \bigcup_{n \in \mathbb{N}} \Sigma_n \mathcal{K}^2$$
$$p(\mathcal{K}) = \inf\{n \in \mathbb{N} \mid \Sigma \mathcal{K}^2 = \Sigma_n \mathcal{K}^2\} \in \mathbb{N} \cup \{\infty\}.$$

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles

Sums of squares

Examples and basic observations Growth of the Pythagoras numbe Outline of the talk

Sums of squares

For a commutative ring K and $n \in \mathbb{N}$, define:

$$\Sigma_n \mathcal{K}^2 = \{x_1^2 + \ldots + x_n^2 \mid x_1, \ldots, x_n \in \mathcal{K}\}$$
$$\Sigma \mathcal{K}^2 = \bigcup_{n \in \mathbb{N}} \Sigma_n \mathcal{K}^2$$
$$p(\mathcal{K}) = \inf\{n \in \mathbb{N} \mid \Sigma \mathcal{K}^2 = \Sigma_n \mathcal{K}^2\} \in \mathbb{N} \cup \{\infty\}.$$

We call p(K) the *Pythagoras number of K*. We will focus on the case where K is a field.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

Some first observations:

• $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K) \le 4$ (Siegel, 1921),

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

Some first observations:

- $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K) \le 4$ (Siegel, 1921),
- $p(\mathbb{R}) = p(\mathbb{C}) = 1$,

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

Some first observations:

- $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K) \le 4$ (Siegel, 1921),
- $p(\mathbb{R}) = p(\mathbb{C}) = 1$,
- If char K = 2, then $x_1^2 + \ldots + x_n^2 = (x_1 + \ldots + x_n)^2$ for $x_1, \ldots, x_n \in K$. Hence p(K) = 1.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

Some first observations:

- $p(\mathbb{Q}) = p(\mathbb{Z}) = 4$ (Euler, Lagrange). In fact, when K is a number field, then $p(K) \le 4$ (Siegel, 1921),
- $p(\mathbb{R}) = p(\mathbb{C}) = 1$,
- If char K = 2, then $x_1^2 + \ldots + x_n^2 = (x_1 + \ldots + x_n)^2$ for $x_1, \ldots, x_n \in K$. Hence p(K) = 1.
- If K is a finite field with char $K \neq 2$, then p(K) = 2.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

• If $2 \in K^{\times}$ and $-1 \in \Sigma_n K^2$, then $K = \Sigma_{n+1} K^2$. In particular, $p(K) \leq n+1$.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

• If
$$2 \in K^{\times}$$
 and $-1 \in \Sigma_n K^2$, then $K = \Sigma_{n+1} K^2$. In particular, $p(K) \leq n+1$.

Proof.
If
$$-1 = x_1^2 + \ldots + x_n^2$$
 for some $x_1, \ldots, x_n \in K$, and if $a \in K$ is arbitrary, then
 $a = \left(\frac{a+1}{2}\right)^2 - \left(\frac{a-1}{2}\right)^2 = \left(\frac{a+1}{2}\right)^2 + \left(x_1\frac{a-1}{2}\right)^2 + \ldots + \left(x_n\frac{a-1}{2}\right)^2$.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

• If
$$2 \in K^{\times}$$
 and $-1 \in \Sigma_n K^2$, then $K = \Sigma_{n+1} K^2$. In particular, $p(K) \leq n+1$.

Proof.
If
$$-1 = x_1^2 + \ldots + x_n^2$$
 for some $x_1, \ldots, x_n \in K$, and if $a \in K$ is arbitrary, then
 $a = \left(\frac{a+1}{2}\right)^2 - \left(\frac{a-1}{2}\right)^2 = \left(\frac{a+1}{2}\right)^2 + \left(x_1\frac{a-1}{2}\right)^2 + \ldots + \left(x_n\frac{a-1}{2}\right)^2$.

We call a field K real if $-1 \notin \Sigma K^2$ and nonreal if $-1 \in \Sigma K^2$.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

•
$$p(\mathbb{R}(X)) = 2$$
,

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,
- $5 \leq p(\mathbb{R}(X, Y, Z)) \leq 8$. In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1, \dots, X_n)) \leq 2^n$,

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,
- $5 \leq p(\mathbb{R}(X, Y, Z)) \leq 8$. In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1, \ldots, X_n)) \leq 2^n$,
- (Pourchet, 1971) $p(\mathbb{Q}(X)) = 5$.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,
- $5 \leq p(\mathbb{R}(X, Y, Z)) \leq 8$. In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1, \dots, X_n)) \leq 2^n$,
- (Pourchet, 1971) p(Q(X)) = 5.
- For $n \ge 2$, $n + 4 \le p(\mathbb{Q}(X_1, \dots, X_n)) \le 2^{n+1}$ (Coilliot-Thélène; Jannsen, 2016)

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Examples and basic observations

Let us now turn to some examples with function fields.

- $p(\mathbb{R}(X)) = 2$,
- $p(\mathbb{R}(X, Y)) = 4$,
- $5 \leq p(\mathbb{R}(X, Y, Z)) \leq 8$. In general, for $n \geq 2$, $n+2 \leq p(\mathbb{R}(X_1, \ldots, X_n)) \leq 2^n$,

• (Pourchet, 1971)
$$p(Q(X)) = 5$$
.

• For $n \ge 2$, $n + 4 \le p(\mathbb{Q}(X_1, \dots, X_n)) \le 2^{n+1}$ (Coilliot-Thélène; Jannsen, 2016)

We also have the following:

Theorem (Hoffmann, 1999)

For every $n \in \mathbb{N}^+ \cup \{\infty\}$, there exists a real field K with p(K) = n.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Let K be a real field. What can we say about the growth of p(L) for field extensions L/K?

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Let K be a real field. What can we say about the growth of p(L) for field extensions L/K?

We have the following bound for finite extensions (due to Pfister):

 $p(L) \leq [L:K]p(K).$

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Let K be a real field. What can we say about the growth of p(L) for field extensions L/K?

We have the following bound for finite extensions (due to Pfister):

 $p(L) \leq [L:K]p(K).$

Question

Does there exist a finite field extension L/K with p(L) > p(K) + 2?

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Let K be a real field. What can we say about the growth of p(L) for field extensions L/K?

We have the following bound for finite extensions (due to Pfister):

 $p(L) \leq [L:K]p(K).$

Question

Does there exist a finite field extension L/K with p(L) > p(K) + 2?

In fact, we do not know of any example of a field K where p(K(X)) > p(K) + 2, but we nevertheless cannot answer the following:

Question

If K is a field with $p(K) < \infty$, do we have $p(K(X)) < \infty$?

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, $n \in \mathbb{N}$. The following are equivalent:

- $p(K(X)) \leq 2^{n+1}$,
- 2 $p(L) < 2^{n+1}$ for every real finite field extension L/K,
- $\ \ \, {\bf 3} \ -1\in \Sigma_{2^n}L^2 \ \text{for every nonreal finite field extension } L/K.$

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, $n \in \mathbb{N}$. The following are equivalent:

•
$$p(K(X)) \le 2^{n+1}$$

- 2 $p(L) < 2^{n+1}$ for every real finite field extension L/K,
- $\begin{tabular}{ll} \bullet & -1 \in \Sigma_{2^n} L^2 \mbox{ for every nonreal finite field extension } L/K. \end{tabular}$

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X,Y)) < \infty$.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Growth of the Pythagoras number

Pythagoras numbers of finite field extensions and of function fields are related:

Theorem (Pfister; Becher, Van Geel, 2009)

Let K be a real field, $n \in \mathbb{N}$. The following are equivalent:

•
$$p(K(X)) \le 2^{n+1}$$

- 2 $p(L) < 2^{n+1}$ for every real finite field extension L/K,
- $\label{eq:lastic_linear} {\rm \textbf{0}} \ -1 \in \Sigma_{2^n} L^2 \ \mbox{for every nonreal finite field extension } L/K.$

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a field with p(K(X)) = 2. Then $p(L) \le 5$ for all finite field extensions L/K(X). In particular, $p(K(X, Y)) \le 8$.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Outline of the talk

• **The Pythagoras number:** definition, basic examples, growth of the Pythagoras number under finite extensions and function fields

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Outline of the talk

- **The Pythagoras number:** definition, basic examples, growth of the Pythagoras number under finite extensions and function fields
- **②** Pfister forms and upper bounds on the Pythagoras numbers:
 - Why do we know upper bounds for p(K) in many natural cases?
 - Why is this nevertheless a hard problem?

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Outline of the talk

- **The Pythagoras number:** definition, basic examples, growth of the Pythagoras number under finite extensions and function fields
- **②** Pfister forms and upper bounds on the Pythagoras numbers:
 - Why do we know upper bounds for p(K) in many natural cases?
 - Why is this nevertheless a hard problem?

I Hereditarily Pythagorean fields:

- How to characterise for a real field K that p(K(X)) = 2?
- Examples and constructions of such fields.

Pfister forms and upper bounds on the Pythagoras numbers Hereditarily Pythagorean fields Valuations and local-global principles Sums of squares Examples and basic observations Growth of the Pythagoras number Outline of the talk

Outline of the talk

- **The Pythagoras number:** definition, basic examples, growth of the Pythagoras number under finite extensions and function fields
- **②** Pfister forms and upper bounds on the Pythagoras numbers:
 - Why do we know upper bounds for p(K) in many natural cases?
 - Why is this nevertheless a hard problem?

O Hereditarily Pythagorean fields:

- How to characterise for a real field K that p(K(X)) = 2?
- Examples and constructions of such fields.
- **•** Valuations and local-global principles:
 - Characterising her. pyth. fields with valuations.
 - Bounds on p(L) for L/K(X) finite based on a local-global principle for quadratic forms.

Pfister forms The property I_n and Pythagoras numbers

Pfister forms

Let always K be a field, char $K \neq 2$. For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^{\times}$, we define inductively the *n*-fold Pfister form

 $\langle\!\langle a_1,\ldots,a_n\rangle\!\rangle_K$ as a quadratic form in 2ⁿ variables:

Pfister forms The property I_n and Pythagoras numbers

Pfister forms

Let always K be a field, char $K \neq 2$. For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^{\times}$, we define inductively the *n*-fold Pfister form $\langle\!\langle a_1, \ldots, a_n \rangle\!\rangle_K$ as a quadratic form in 2^n variables: • n = 0: $\langle\!\langle \rangle\!\rangle_K(X_1) = X_1^2$,

Pfister forms The property I_n and Pythagoras numbers

).

Pfister forms

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^{\times}$, we define inductively the *n*-fold Pfister form $\langle \langle a_1, \ldots, a_n \rangle \rangle_K$ as a quadratic form in 2^n variables:

•
$$n = 0$$
: $\langle\!\langle \rangle\!\rangle_{K}(X_{1}) = X_{1}^{2}$,
• $n > 0$: $\langle\!\langle a_{1}, \dots, a_{n} \rangle\!\rangle_{K}(X_{1}, \dots, X_{2^{n}}) = \langle\!\langle a_{1}, \dots, a_{n-1} \rangle\!\rangle_{K}(X_{1}, \dots, X_{2^{n-1}}) - a_{n} \langle\!\langle a_{1}, \dots, a_{n-1} \rangle\!\rangle_{K}(X_{2^{n-1}+1}, \dots, X_{2^{n}})$

Pfister forms The property In and Pythagoras numbers

Pfister forms

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^{\times}$, we define inductively the *n*-fold Pfister form $\langle \langle a_1, \ldots, a_n \rangle \rangle_K$ as a quadratic form in 2^n variables:

•
$$n = 0$$
: $\langle\!\langle \rangle\!\rangle_{K}(X_{1}) = X_{1}^{2}$,
• $n > 0$: $\langle\!\langle a_{1}, \dots, a_{n} \rangle\!\rangle_{K}(X_{1}, \dots, X_{2^{n}}) = \langle\!\langle a_{1}, \dots, a_{n-1} \rangle\!\rangle_{K}(X_{1}, \dots, X_{2^{n-1}}) - a_{n} \langle\!\langle a_{1}, \dots, a_{n-1} \rangle\!\rangle_{K}(X_{2^{n-1}+1}, \dots, X_{2^{n}})$.

We will say that K satisfies I_n if every (n + 1)-fold Pfister form over K has a non-trivial zero.

We say that K satisfies I_n^* if every finite field extension L/K satisfies I_n .

Pfister forms The property In and Pythagoras numbers

Pfister forms

Let always K be a field, char $K \neq 2$.

For $n \in \mathbb{N}$ and $a_1, \ldots, a_n \in K^{\times}$, we define inductively the *n*-fold Pfister form $\langle \langle a_1, \ldots, a_n \rangle \rangle_K$ as a quadratic form in 2^n variables:

•
$$n = 0$$
: $\langle\!\langle\rangle\!\rangle_{\mathcal{K}}(X_1) = X_1^2$,

•
$$n > 0$$
: $\langle\!\langle a_1, \ldots, a_n \rangle\!\rangle_{\mathcal{K}}(X_1, \ldots, X_{2^n}) = \langle\!\langle a_1, \ldots, a_{n-1} \rangle\!\rangle_{\mathcal{K}}(X_1, \ldots, X_{2^{n-1}}) - a_n \langle\!\langle a_1, \ldots, a_{n-1} \rangle\!\rangle_{\mathcal{K}}(X_{2^{n-1}+1}, \ldots, X_{2^n}).$

We will say that K satisfies I_n if every (n + 1)-fold Pfister form over K has a non-trivial zero.

We say that K satisfies I_n^* if every finite field extension L/K satisfies I_n . Examples (always characteristic not 2):

- algebraically closed fields satify I_0^* ,
- finite fields satisfy I_1^* ,
- non-real global fields satisfy I_2^* (e.g. by Hasse-Minkowski).

Pfister forms The property I_n and Pythagoras numbers

Pfister forms

Theorem

Suppose that K satisfies I_n^* . Then K(X) satisfies I_{n+1}^* .
Pfister forms The property In and Pythagoras numb

Pfister forms

Theorem

Suppose that K satisfies I_n^* . Then K(X) satisfies I_{n+1}^* .

Proof idea.

 As a consequence to Voevodsky's solution to the Milnor Conjecture (2003), we have that

$$K$$
 satisfies $I_n^* \quad \Leftrightarrow \quad \operatorname{cd}_2(K) \leq n$

where $cd_2(K)$ denotes the 2-cohomological dimension of K.

• It is a standard result from Galois cohomology that $cd_2(K(X)) \leq cd_2(K) + 1$.

Pfister forms The property I_n and Pythagoras numbers

The property I_n and Pythagoras numbers

Theorem (Pfister, Elman-Lam, '90ies)

If $K(\sqrt{-1})$ satisfies I_n , then $p(K) \leq 2^n$.

Pfister forms The property *I_n* and Pythagoras numbers

The property I_n and Pythagoras numbers

Theorem (Pfister, Elman-Lam, '90ies)

If $K(\sqrt{-1})$ satisfies I_n , then $p(K) \leq 2^n$.

Applications:

- (Pfister, 1970) $p(\mathbb{R}(X_1,\ldots,X_n)) \leq 2^n$,
- $p(\mathbb{Q}(X_1,\ldots,X_n)) \leq 2^{n+2}$.

Pfister forms The property *I_n* and Pythagoras numbers

The property I_n and Pythagoras numbers

Theorem (Pfister, Elman-Lam, '90ies)

If $K(\sqrt{-1})$ satisfies I_n , then $p(K) \leq 2^n$.

Applications:

- (Pfister, 1970) $p(\mathbb{R}(X_1, ..., X_n)) \le 2^n$,
- $p(\mathbb{Q}(X_1,\ldots,X_n)) \leq 2^{n+2}$.

Conclusion: the well-behavedness of $p(K(X_1, ..., X_n))$ for $K = \mathbb{R}$ or $K = \mathbb{Q}$ comes from the well-behavedness of the property I_n^* . What if K does not satisfy I_n^* for any n?

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K pythagorean if p(K) = 1. We call a real field K hereditarily pythagorean if p(L) = 1 for every finite real extension L/K.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K pythagorean if p(K) = 1. We call a real field K hereditarily pythagorean if p(L) = 1 for every finite real extension L/K. Equivalently (see Theorem earlier on), a real field K is hereditarily pythagorean if p(K(X)) = 2. We want to prove:

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then $p(L) \le 5$ for all finite field extensions L/K(X). In particular, $p(K(X, Y)) \le 8$.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K pythagorean if p(K) = 1. We call a real field K hereditarily pythagorean if p(L) = 1 for every finite real extension L/K. Equivalently (see Theorem earlier on), a real field K is hereditarily pythagorean if p(K(X)) = 2. We want to prove:

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then $p(L) \le 5$ for all finite field extensions L/K(X). In particular, $p(K(X, Y)) \le 8$.

We will first look at some special cases.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean.

Equivalently, K is hereditarily euclidean if and only if K is real and $K(\sqrt{-1})$ satisfies I_0^* .

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean.

Equivalently, K is hereditarily euclidean if and only if K is real and $K(\sqrt{-1})$ satisfies I_0^* . Example: \mathbb{R} is hereditarily euclidean.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Pythagorean and euclidean fields

We call a real field K euclidean if every element of K is either a square or minus a square. We call a real field K hereditarily euclidean if every finite real extension of K is euclidean.

Equivalently, K is hereditarily euclidean if and only if K is real and $K(\sqrt{-1})$ satisfies I_0^* . Example: \mathbb{R} is hereditarily euclidean.

If K is hereditarily euclidean, then K is hereditarily pythagorean. Furthermore, one has that $K(\sqrt{-1})(X, Y)$ is l_2^* , hence $p(L) \leq 3$ for any finite field extension L/K(X).

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

For a field K, we may consider the field of formal Laurent series

$$\mathcal{K}((T)) = \left\{ \sum_{j=N}^{+\infty} a_j T^i \mid N \in \mathbb{Z}, a_j \in \mathcal{K} \right\}.$$

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

For a field K, we may consider the field of formal Laurent series

$$\mathcal{K}((\mathcal{T})) = \left\{ \sum_{j=N}^{+\infty} a_j \mathcal{T}^i \mid N \in \mathbb{Z}, a_i \in \mathcal{K} \right\}.$$

Proposition

Suppose K is hereditarily Pythagorean. Then K((T)) is hereditarily Pythagorean.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

For a field K, we may consider the field of formal Laurent series

$$\mathcal{K}((\mathcal{T})) = \left\{ \sum_{j=N}^{+\infty} a_j \mathcal{T}^i \mid N \in \mathbb{Z}, a_i \in \mathcal{K} \right\}.$$

Proposition

Suppose K is hereditarily Pythagorean. Then K((T)) is hereditarily Pythagorean.

Proof idea.

Let L/K((T)) be a real finite field extension.

- L carries a complete discrete valuation v whose residue field Lv is a finite extension of K, hence pythagorean.
- By Hensel's Lemma, also *L* is pythagorean.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

We can now give examples of fields K which are hereditarily pythagorean, but for which $K(\sqrt{-1})$ does not satisfy I_n :

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

We can now give examples of fields K which are hereditarily pythagorean, but for which $K(\sqrt{-1})$ does not satisfy I_n :

• $K_n = \mathbb{R}((T_1)) \dots ((T_n))$ is hereditarily pythagorean, but $K_n(\sqrt{-1}) = \mathbb{C}((T_1)) \dots ((T_n))$ is not I_m for m < n.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

We can now give examples of fields K which are hereditarily pythagorean, but for which $K(\sqrt{-1})$ does not satisfy I_n :

- $K_n = \mathbb{R}((T_1)) \dots ((T_n))$ is hereditarily pythagorean, but $K_n(\sqrt{-1}) = \mathbb{C}((T_1)) \dots ((T_n))$ is not I_m for m < n.
- Consequently, $K = \bigcup_{n \in \mathbb{N}} K_n$ is hereditarily pythagorean, but not I_m for any $m \in \mathbb{N}$.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Formal Laurent series

We can now give examples of fields K which are hereditarily pythagorean, but for which $K(\sqrt{-1})$ does not satisfy I_n :

- $K_n = \mathbb{R}((T_1)) \dots ((T_n))$ is hereditarily pythagorean, but $K_n(\sqrt{-1}) = \mathbb{C}((T_1)) \dots ((T_n))$ is not I_m for m < n.
- Consequently, $K = \bigcup_{n \in \mathbb{N}} K_n$ is hereditarily pythagorean, but not I_m for any $m \in \mathbb{N}$.
- Nevertheless, in the above setup, (Becher, Grimm, Van Geel, 2012) $p(K(X, Y)) \le 4$.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Hereditarily half-euclidean fields

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Hereditarily half-euclidean fields

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We call a real field K hereditarily half-euclidean if every real finite field extension is half-euclidean.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Hereditarily half-euclidean fields

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We call a real field K hereditarily half-euclidean if every real finite field extension is half-euclidean.

Example: Let \leq_1 and \leq_2 be the two orderings on $\mathbb{Q}(\sqrt{2})$. By Zorn's Lemma, there exists a maximal algebraic extension K of $\mathbb{Q}(\sqrt{2})$ subject to the condition that \leq_1 and \leq_2 extend to K. Then K is hereditarily half-euclidean.

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Hereditarily half-euclidean fields

Note: by Artin's Theorem, a field K is euclidean if and only if it is pythagorean and has exactly one (field) ordering.

We call a field K half-euclidean if it is pythagorean and has exactly two orderings. We call a real field K hereditarily half-euclidean if every real finite field extension is half-euclidean.

Example: Let \leq_1 and \leq_2 be the two orderings on $\mathbb{Q}(\sqrt{2})$. By Zorn's Lemma, there exists a maximal algebraic extension K of $\mathbb{Q}(\sqrt{2})$ subject to the condition that \leq_1 and \leq_2 extend to K. Then K is hereditarily half-euclidean.

If K is hereditarily half-euclidean, then $K(\sqrt{-1})$ is l_1^* , hence $p(L) \le 4$ for all finite field extensions L/K(X).

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Hereditarily half-euclidean fields

In summary, we have the following examples/constructions of hereditarily pythagorean fields:

- hereditarily euclidean fields,
- hereditarily half-euclidean fields,
- if K is hereditarily pythagorean, then so is K((T)).

Pythagorean and euclidean fields Formal Laurent series Hereditarily half-euclidean fields

Hereditarily half-euclidean fields

In summary, we have the following examples/constructions of hereditarily pythagorean fields:

- hereditarily euclidean fields,
- hereditarily half-euclidean fields,
- if K is hereditarily pythagorean, then so is K((T)).

In fact, we will see now that this *almost* covers all examples ...

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

For a field K:

• A valuation on K is a group epimorphism

$$v: K^{\times} \twoheadrightarrow vK$$

where vK is an ordered abelian group (called the *value group of v*), such that $v(x + y) \ge \max\{v(x), v(y)\}$ for $x, y \in K$ with $x + y \ne 0$.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

For a field K:

• A valuation on K is a group epimorphism

$$v: K^{\times} \twoheadrightarrow vK$$

where vK is an ordered abelian group (called the value group of v), such that $v(x + y) \ge \max\{v(x), v(y)\}$ for $x, y \in K$ with $x + y \ne 0$.

• Given a valuation v on K, we call:

- $\mathcal{O}_v = \{x \in K^{\times} \mid v(x) \ge 0\} \cup \{0\}$ the valuation ring of v,
- $\mathfrak{m}_{v} = \{x \in K^{\times} \mid v(x) > 0\} \cup \{0\}$ the valuation ideal of v,
- $Kv = \mathcal{O}_v / \mathfrak{m}_v$ the residue field of v,
- the number rk(v) of proper convex subgroups of vK the rank of v.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

For a field K:

• A valuation on K is a group epimorphism

$$v: K^{\times} \twoheadrightarrow vK$$

where vK is an ordered abelian group (called the *value group of v*), such that $v(x + y) \ge \max\{v(x), v(y)\}$ for $x, y \in K$ with $x + y \neq 0$.

• Given a valuation v on K, we call:

- $\mathcal{O}_v = \{x \in K^{\times} \mid v(x) \ge 0\} \cup \{0\}$ the valuation ring of v,
- $\mathfrak{m}_{v} = \{x \in K^{\times} \mid v(x) > 0\} \cup \{0\}$ the valuation ideal of v,
- $Kv = \mathcal{O}_v/\mathfrak{m}_v$ the residue field of v,
- the number rk(v) of proper convex subgroups of vK the rank of v.
- We call a valuation v on K
 - complete if the induced field topology is complete,
 - henselian if v extends uniquely to every finite field extension of K.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

Example: let K_0 be any field, consider the field $K = K_0((T))$ and define the map

$$v_{\mathcal{T}}: \mathcal{K}^{\times} \to \mathbb{Z}: \sum_{j=N}^{+\infty} a_j T^j \mapsto \min\{j \in \mathbb{Z} \mid a_j \neq 0\}.$$

This is a complete, henselian valuation of rank 1 with residue field K_0 .

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

Proposition

Let K be a field, v a henselian valuation on K with char $Kv \neq 2$. Then one of the following occurs:

- p(K) = p(Kv),
- p(K) = p(Kv) + 1, $-1 \in \Sigma_{p(K)}K^2$ and $-1 \in \Sigma_{p(K)}(Kv)^2$.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

Proposition

Let K be a field, v a henselian valuation on K with char $Kv \neq 2$. Then one of the following occurs:

- p(K) = p(Kv),
- p(K) = p(Kv) + 1, $-1 \in \Sigma_{p(K)}K^2$ and $-1 \in \Sigma_{p(K)}(Kv)^2$.

In particular, we obtain a generalisation of the observation that if K is hereditarily pythagorean, then so is K((T)):

Corollary

Let K be a field, v a henselian valuation on K. If Kv is hereditarily pythagorean, then so is K.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Henselian valuations

The promised classification of hereditarily pythagorean fields:

Theorem (Bröcker, 1976)

A field K is hereditarily pythagorean if and only if there exists a henselian valuation v on K whose residue field is hereditarily euclidean or hereditarily half-euclidean.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Mehmeti's local-global principle

Theorem (Mehmeti, 2019)

Let K be a field with char $K \neq 2$ and with a complete rank 1 valuation v. Let L/K(X) be a finite field extension. Let $q(X_1, ..., X_n)$ be a quadratic form over L for some $n \geq 3$.

If q has a non-trivial zero over every completion L^w where w is a rank 1 valuation on L with either $w|_K = 0$ or $w|_K = v$, then q has a non-trivial zero over L.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Mehmeti's local-global principle

Theorem (Mehmeti, 2019)

Let K be a field with char $K \neq 2$ and with a complete rank 1 valuation v. Let L/K(X) be a finite field extension. Let $q(X_1, ..., X_n)$ be a quadratic form over L for some $n \geq 3$.

If q has a non-trivial zero over every completion L^w where w is a rank 1 valuation on L with either $w|_K = 0$ or $w|_K = v$, then q has a non-trivial zero over L.

In particular:

Corollary

Let K be a field with a complete rank 1 valuation v. Let L/K(X) be a finite field extension. We have

 $p(L) = \sup\{p(L^w) \mid w \text{ rank } 1 \text{ valuation on } F \text{ with } w|_{\mathcal{K}} = 0 \text{ or } w|_{\mathcal{K}} = v\}.$

Henselian valuations Mehmeti's local-global principle **Proof of main theorem** Outlook

Proof of main theorem

To prove

Theorem (Becher, D., Grimm, Manzano-Flores, Zaninelli, 2023)

Let K be a hereditarily pythagorean field. Then $p(L) \le 5$ for all finite field extensions L/K(X). In particular, $p(K(X, Y)) \le 8$.

note that we have the following:

- The theorem holds when K is hereditarily euclidean.
- The theorem holds when K is hereditarily half-euclidean.
- (Bröcker) In general, K carries a henselian valuation whose residue field is hereditarily euclidean of hereditarily half-euclidean.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Proof of main theorem

We are thus done if we prove the following:

Theorem

Let $n \in \mathbb{N}$ not a power of 2 and consider the following property for a field K:

For every field field extension L/K(X) we have $p(L) \le n$. (1)

If a field K carries a henselian valuation v whose residue field Kv satisfies (1) and char $Kv \neq 2$, then K satisfies (1).

Henselian valuations Mehmeti's local-global principle **Proof of main theorem** Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

• v is complete of rank one: This case follows from Mehmeti's local-global principle.
Henselian valuations Mehmeti's local-global principle **Proof of main theorem** Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

- *v is complete of rank one*: This case follows from Mehmeti's local-global principle.
- *v* is henselian of rank one: Mehmeti's local-global principle can be extended to this situation by standard arguments.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

- *v is complete of rank one*: This case follows from Mehmeti's local-global principle.
- *v* is henselian of rank one: Mehmeti's local-global principle can be extended to this situation by standard arguments.
- v is henselian of finite rank: Apply induction on the rank.

Henselian valuations Mehmeti's local-global principle Proof of main theorem Outlook

Proof of main theorem

Proof idea.

We prove this in multiple steps:

- *v is complete of rank one*: This case follows from Mehmeti's local-global principle.
- *v* is henselian of rank one: Mehmeti's local-global principle can be extended to this situation by standard arguments.
- *v* is henselian of finite rank: Apply induction on the rank.
- *v* is henselian of arbitrary rank: By a limit argument, reduce to considering everything over some subfield of *K* of finite transcendence degree and hence finite rank.

Henselian valuations Mehmeti's local-global principle Proof of main theorem **Outlook**

Outlook

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X,Y)) < \infty$.

Henselian valuations Mehmeti's local-global principle Proof of main theorem **Outlook**

Outlook

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

- Can we show $p(K(X)) \le 4 \Rightarrow p(K(X,Y)) < \infty$?
- Can we show $p(K(X)) = 2 \Rightarrow p(K(X, Y, Z)) < \infty$?
- Can we find a more elementary proof that $p(K(X)) = 2 \Rightarrow p(K(X, Y)) \le 8$?

Henselian valuations Mehmeti's local-global principle Proof of main theorem **Outlook**

Outlook

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

- Can we show $p(K(X)) \le 4 \Rightarrow p(K(X,Y)) < \infty$?
- Can we show $p(K(X)) = 2 \Rightarrow p(K(X, Y, Z)) < \infty$?
- Can we find a more elementary proof that $p(K(X)) = 2 \Rightarrow p(K(X, Y)) \le 8$?

Conjecture

If p(K(X)) = 2, then $p(L) \le 3$ for every finite field extension L/K(X). In particular, $p(K(X, Y)) \le 4$.

Henselian valuations Mehmeti's local-global principle Proof of main theorem **Outlook**

Outlook

What's next?

Conjecture

If K is a field and $p(K(X)) < \infty$, then $p(K(X, Y)) < \infty$.

- Can we show $p(K(X)) \le 4 \Rightarrow p(K(X,Y)) < \infty$?
- Can we show $p(K(X)) = 2 \Rightarrow p(K(X, Y, Z)) < \infty$?
- Can we find a more elementary proof that $p(K(X)) = 2 \Rightarrow p(K(X, Y)) \le 8$?

Conjecture

If p(K(X)) = 2, then $p(L) \le 3$ for every finite field extension L/K(X). In particular, $p(K(X, Y)) \le 4$.

In view of the previous theorem, in order to prove this conjecture, it suffices to prove it when K is hereditarily half-euclidean.

 K.J. Becher, N. Daans, D. Grimm, G. Manzano-Flores, M. Zaninelli.

The Pythagoras number of a Rational Function Field in two variables.

preprint available as arXiv:2302.11423
(2023).

[2] K.J. Becher, J. Van Geel.

Sums of squares in function fields of hyperelliptic curves

Math. Z. 261 (2009), 829-844.

[3] L. Bröcker.

Characterization of Fans and Hereditarily Pythagorean Fields. *Math. Z.* 151 (1976): 149-164.

[4] D.W. Hoffmann.

Pythagoras number of fields J. Am. Math. Soc. 12 (1999): 839-848. [5] U. Jannsen.

Hasse principles for higher-dimensional fields. Ann. of Math. 183 (2016), 1-71.

[6] V. Mehmeti.

Patching over Berkovich curves and quadratic forms. Comp. Math. 155 (2019), 2399-2438.

[7] A. Pfister.

Quadratic forms with applications to algebraic geometry and topology. London Mathematical Society Lecture Note Series 217, Cambridge University Press, 1995.

[8] V. Voevodsky.

Motivic cohomology with $\mathbb{Z}/2$ -coefficients. *Publ. Math. Inst. Hautes Études Sci.* 98 (2003), 59-104.

Thanks for your attention!

Nicolas Daans *E-mail*: nicolas.daans@matfyz.cuni.cz