
A universal definition of Z in Q

Nicolas Daans

University of Antwerp

July 7, 2020



Introduction Ramification sets & existential predicates Defining Z in Q

Existential and universal definitions in number theory

Let L always be the first-order language of rings.
Let K be a field. Which subrings of K are (existentially,
universally) LK -definable in K?

Theorem 1.1 (J. Robinson, 1949)

Z has a first-order L-definition in Q.

It then follows from the undecidability of Th(Z) that the first-order
theory of Q is undecidable.

Theorem 1.2 (Poonen, 2009)

Z has an ∀∃L-definition in Q.
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Existential and universal definitions in number theory

Question 1.3

Does Z have an existential L-definition in Q?

If the answer were yes, it would follow from the undecidability of
Th∃(Z) that the existential first-order theory of Q is also
undecidable.

Theorem 1.4 (Koenigsmann, 2010)

Z has a universal L-definition in Q.

Theorem 1.5 (Park, 2012)

Let K be a number field. The ring of integers OK has a universal
Λ-definition in K.
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Outline

Plan for the rest of the talk:

Explain how (properties of) quaternion algebras over global
and local fields play a role in obtaining these results.

Mention some existentially definable “building blocks” from
which we will build our definition.

Give a proof of Koenigsmann’s Theorem (universal definability
of Z in Q).
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The ramification set

Denote by P the set of prime numbers and set P′ = P ∪ {∞}.
Define Q∞ = R.
For a, b ∈ Q×, define the ramification set of the quaternion algebra
(a, b)Q as follows:

∆(a, b) = {p ∈ P′ | (a, b)Qp is non-split}.

Recall: (a, b)Q ∼= (ac2, bd2)Q for a, b, c , d ∈ Q×, whence
∆(a, b) = ∆(ac2, bd2).
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The ramification set

Proposition 2.1 (Computation of the ramification set)

Let a, b ∈ Z \ {0} be square-free.

1 ∞ ∈ ∆(a, b) if and only if a < 0 and b < 0.
2 For p ∈ P \ {2} we have p ∈ ∆(a, b) if and only if one of the

following holds

vp(a) = 1, vp(b) = 0 and b is not a square mod p
vp(a) = 0, vp(b) = 1 and a is not a square mod p
vp(a) = 1 = vp(b) and −ab is not a square mod p

3 (Hilbert Reciprocity) |∆(a, b)| is an even natural number.

Note: this allows us to fully compute the ramification set of a
given quaternion algebra over Q (we can scale any a, b ∈ Q× be a
square to obtain a square-free element of Z \ {0}).
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The ramification set

Lemma 2.2

Let p, q be positive prime numbers such that q ≡ 5 mod 8 and q is
not a square modulo p. We have:

{p,∞} =


∆(−1,−2) if p = 2

∆(−1,−2p) if p ≡ −1 mod 4

∆(−p,−2) if p ≡ 5 mod 8

∆(−q,−2p) if p ≡ 1 mod 8

Proof: Exercise.
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Existentially definable building blocks

For a, b ∈ Q×, define

T (a, b) =
⋂

p∈∆(a,b)

Z(p)

where (for technical reasons) we set Z(∞) =]− 4, 4[.

Proposition 2.3 (Poonen, Koenigsmann)

There exists an existential L-formula ψ in 3 free variables such
that for all a, b ∈ Q× we have

T (a, b) = {x ∈ Q | Q |= ψ(x , a, b)}

Proof: tomorrow.
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Existentially definable building blocks

Corollary 2.4

For every p ∈ P the ring

Z(p) = {x ∈ Q | vp(x) ≥ 0}

has an existential definition in Q.

Proof: Exercise.
Already implicit in Robinson’s work.
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Existentially definable building blocks

For c ∈ Q×, define

Odd(c) = {p ∈ P | vp(c) is odd}

and for a, b, c ∈ Q×, set

Jc(a, b) =
⋂

p∈∆(a,b)∩Odd(c)

pZ(p).

Lemma 2.5

We have

Jc(a, b) = T (a, b) ·
(
(c · (�K )) ∩ (1− (�K ) · T (a, b)×)

)
.

Proof: Exercise.
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Corollary 2.6 (Koenigsmann)

There exists an existential L-formula ψ in 4 free variables such
that for all a, b, c ∈ Q× we have

Jc(a, b) = {x ∈ K | K |= ψ(x , a, b, c)}

Proof sketch:
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First steps

Lemma 3.1

If
⋃

p∈P pZ(p) has an existential L-definition in Q, then Z has a
universal L-definition in Q.

Proof:
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First steps

Lemma 3.2

Let a, b ∈ Q×, v2(b) = 0. Then

J−a(−a,−2b) ∩ J−2b(−a,−2b) =
⋂

p∈∆(−a,−2b)∩P

pZ(p).

Proof:
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Proof of main theorem

Proposition 3.3 (Daans, 2018)

We have⋃
p∈P

pZ(p) =
⋃

a,b>0
v2(b)=0

J−a(−a,−2b) ∩ J−2a(−a,−2b).

Proof:
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Proof of main theorem

Proof of Theorem 1.4:
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Outlook

Tomorrow, I will talk about:

the proof of Proposition 2.3, i.e. the existential definability of⋂
p∈∆(a,b) Z(p).

What was essentially used in this proof about existential
definability and ramification sets? How can we generalise, e.g.
to number fields (= finite extensions of Q)?
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