A universal definition of $\mathbb Z$ in $\mathbb Q$

Nicolas Daans

University of Antwerp

July 7, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Existential and universal definitions in number theory

Let \mathcal{L} always be the first-order language of rings. Let K be a field. Which subrings of K are (existentially, universally) \mathcal{L}_K -definable in K?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existential and universal definitions in number theory

Let \mathcal{L} always be the first-order language of rings. Let K be a field. Which subrings of K are (existentially, universally) \mathcal{L}_{K} -definable in K?

Theorem 1.1 (J. Robinson, 1949)

 \mathbb{Z} has a first-order \mathcal{L} -definition in \mathbb{Q} .

It then follows from the undecidability of $Th(\mathbb{Z})$ that the first-order theory of \mathbb{Q} is undecidable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existential and universal definitions in number theory

Let \mathcal{L} always be the first-order language of rings. Let K be a field. Which subrings of K are (existentially, universally) \mathcal{L}_{K} -definable in K?

Theorem 1.1 (J. Robinson, 1949)

 $\mathbb Z$ has a first-order $\mathcal L\text{-}definition$ in $\mathbb Q.$

It then follows from the undecidability of $Th(\mathbb{Z})$ that the first-order theory of \mathbb{Q} is undecidable.

Theorem 1.2 (Poonen, 2009)

 \mathbb{Z} has an $\forall \exists \mathcal{L}$ -definition in \mathbb{Q} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Existential and universal definitions in number theory

Question 1.3

Does \mathbb{Z} have an existential \mathcal{L} -definition in \mathbb{Q} ?

If the answer were yes, it would follow from the undecidability of $Th_{\exists}(\mathbb{Z})$ that the existential first-order theory of \mathbb{Q} is also undecidable.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Existential and universal definitions in number theory

Question 1.3

Does \mathbb{Z} have an existential \mathcal{L} -definition in \mathbb{Q} ?

If the answer were yes, it would follow from the undecidability of $Th_{\exists}(\mathbb{Z})$ that the existential first-order theory of \mathbb{Q} is also undecidable.

Theorem 1.4 (Koenigsmann, 2010)

 $\mathbb Z$ has a universal $\mathcal L\text{-}definition$ in $\mathbb Q.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existential and universal definitions in number theory

Question 1.3

Does \mathbb{Z} have an existential \mathcal{L} -definition in \mathbb{Q} ?

If the answer were yes, it would follow from the undecidability of $Th_{\exists}(\mathbb{Z})$ that the existential first-order theory of \mathbb{Q} is also undecidable.

Theorem 1.4 (Koenigsmann, 2010)

 $\mathbb Z$ has a universal $\mathcal L\text{-}definition$ in $\mathbb Q.$

Theorem 1.5 (Park, 2012)

Let K be a number field. The ring of integers \mathcal{O}_K has a universal Λ -definition in K.

Outline

Ramification sets & existential predicates 0000000

Defining $\mathbb Z$ in $\mathbb Q$ 00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Plan for the rest of the talk:

• Give a proof of Koenigsmann's Theorem (universal definability of $\mathbb Z$ in $\mathbb Q).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Plan for the rest of the talk:

• Explain how (properties of) quaternion algebras over global and local fields play a role in obtaining these results.

 Give a proof of Koenigsmann's Theorem (universal definability of Z in Q).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

Plan for the rest of the talk:

- Explain how (properties of) quaternion algebras over global and local fields play a role in obtaining these results.
- Mention some existentially definable "building blocks" from which we will build our definition.
- Give a proof of Koenigsmann's Theorem (universal definability of Z in Q).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The ramification set

Denote by \mathbb{P} the set of prime numbers and set $\mathbb{P}' = \mathbb{P} \cup \{\infty\}$. Define $\mathbb{Q}_{\infty} = \mathbb{R}$. For $a, b \in \mathbb{Q}^{\times}$, define the *ramification set* of the quaternion algebra $(a, b)_{\mathbb{Q}}$ as follows:

 $\Delta(a,b) = \{ p \in \mathbb{P}' \mid (a,b)_{\mathbb{Q}_p} \text{ is non-split} \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The ramification set

Denote by \mathbb{P} the set of prime numbers and set $\mathbb{P}' = \mathbb{P} \cup \{\infty\}$. Define $\mathbb{Q}_{\infty} = \mathbb{R}$. For $a, b \in \mathbb{Q}^{\times}$, define the *ramification set* of the quaternion algebra $(a, b)_{\mathbb{Q}}$ as follows:

$$\Delta(a,b)=\{p\in \mathbb{P}'\mid (a,b)_{\mathbb{Q}_p} ext{ is non-split}\}.$$

Recall: $(a, b)_{\mathbb{Q}} \cong (ac^2, bd^2)_{\mathbb{Q}}$ for $a, b, c, d \in \mathbb{Q}^{\times}$, whence $\Delta(a, b) = \Delta(ac^2, bd^2)$.

The ramification set

Proposition 2.1 (Computation of the ramification set)

Let $a, b \in \mathbb{Z} \setminus \{0\}$ be square-free.

- $\infty \in \Delta(a, b)$ if and only if a < 0 and b < 0.
- ② For $p \in \mathbb{P} \setminus \{2\}$ we have $p \in \Delta(a, b)$ if and only if one of the following holds
 - $v_p(a) = 1$, $v_p(b) = 0$ and b is not a square mod p
 - $v_p(a) = 0$, $v_p(b) = 1$ and a is not a square mod p
 - $v_p(a) = 1 = v_p(b)$ and -ab is not a square mod p
- **(***Hilbert Reciprocity*) $|\Delta(a, b)|$ *is an even natural number.*

Note: this allows us to fully compute the ramification set of a given quaternion algebra over \mathbb{Q} (we can scale any $a, b \in \mathbb{Q}^{\times}$ be a square to obtain a square-free element of $\mathbb{Z} \setminus \{0\}$).

Ramification sets & existential predicates

Defining \mathbb{Z} in \mathbb{Q} 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The ramification set

Lemma 2.2

Let p, q be positive prime numbers such that $q \equiv 5 \mod 8$ and q is not a square modulo p. We have:

$$\{p,\infty\} = \begin{cases} \Delta(-1,-2) & \text{if } p \equiv 2\\ \Delta(-1,-2p) & \text{if } p \equiv -1 \mod 4\\ \Delta(-p,-2) & \text{if } p \equiv 5 \mod 8\\ \Delta(-q,-2p) & \text{if } p \equiv 1 \mod 8 \end{cases}$$

Proof: Exercise.

Ramification sets & existential predicates

Defining $\mathbb Z$ in $\mathbb Q$ 00000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Existentially definable building blocks

For $a, b \in \mathbb{Q}^{\times}$, define

$$T(a,b) = igcap_{p \in \Delta(a,b)} \mathbb{Z}_{(p)}$$

where (for technical reasons) we set $\mathbb{Z}_{(\infty)} =]-4, 4[.$

Ramification sets & existential predicates

Defining \mathbb{Z} in \mathbb{Q} 00000

Existentially definable building blocks

For $a, b \in \mathbb{Q}^{\times}$, define

$$T(a,b) = \bigcap_{p \in \Delta(a,b)} \mathbb{Z}_{(p)}$$

where (for technical reasons) we set $\mathbb{Z}_{(\infty)} =]-4, 4[.$

Proposition 2.3 (Poonen, Koenigsmann)

There exists an existential \mathcal{L} -formula ψ in 3 free variables such that for all $a, b \in \mathbb{Q}^{\times}$ we have

$$T(a,b) = \{x \in \mathbb{Q} \mid \mathbb{Q} \models \psi(x,a,b)\}$$

Proof: tomorrow.

Ramification sets & existential predicates

Defining \mathbb{Z} in \mathbb{Q} 00000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Existentially definable building blocks

Corollary 2.4

For every $p \in \mathbb{P}$ the ring

$$\mathbb{Z}_{(p)} = \{x \in \mathbb{Q} \mid v_p(x) \ge 0\}$$

has an existential definition in \mathbb{Q} .

Proof: Exercise. Already implicit in Robinson's work.

Defining $\mathbb Z$ in $\mathbb Q$ 00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Existentially definable building blocks

For $c \in \mathbb{Q}^{\times}$, define

$$\mathsf{Odd}(c) = \{p \in \mathbb{P} \mid v_p(c) \text{ is odd}\}$$

and for $a, b, c \in \mathbb{Q}^{ imes}$, set

$$J^{c}(a,b) = \bigcap_{p \in \Delta(a,b) \cap \operatorname{Odd}(c)} p\mathbb{Z}_{(p)}.$$

Defining $\mathbb Z$ in $\mathbb Q$ 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Existentially definable building blocks

For $c \in \mathbb{Q}^{\times}$, define

$$\mathsf{Odd}(c) = \{p \in \mathbb{P} \mid v_p(c) \text{ is odd}\}$$

and for $a, b, c \in \mathbb{Q}^{ imes}$, set

$$J^{c}(a,b) = \bigcap_{p \in \Delta(a,b) \cap \mathsf{Odd}(c)} p\mathbb{Z}_{(p)}.$$

Lemma 2.5

We have

$$J^c(a,b) = T(a,b) \cdot \left((c \cdot (\Box K)) \cap (1 - (\Box K) \cdot T(a,b)^{ imes})
ight).$$

Proof: Exercise.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Corollary 2.6 (Koenigsmann)

There exists an existential *L*-formula ψ in 4 free variables such that for all $a, b, c \in \mathbb{Q}^{\times}$ we have

$$J^{c}(a,b) = \{x \in K \mid K \models \psi(x,a,b,c)\}$$

Proof sketch:

Ramification sets & existential predicates 0000000

Defining \mathbb{Z} in \mathbb{Q} •••••

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

First steps

Lemma 3.1

If $\bigcup_{p \in \mathbb{P}} p\mathbb{Z}_{(p)}$ has an existential \mathcal{L} -definition in \mathbb{Q} , then \mathbb{Z} has a universal \mathcal{L} -definition in \mathbb{Q} .

Proof:

Introduction 000

Ramification sets & existential predicates $_{\rm OOOOOOO}$

Defining
$$\mathbb{Z}$$
 in \mathbb{Q}
00000

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

First steps

Lemma 3.2

Let
$$a, b \in \mathbb{Q}^{\times}$$
, $v_2(b) = 0$. Then

$$J^{-a}(-a,-2b)\cap J^{-2b}(-a,-2b)=igcap_{p\in\Delta(-a,-2b)\cap\mathbb{P}}p\mathbb{Z}_{(p)}.$$

Proof:

Ramification sets & existential predicates 0000000

Defining \mathbb{Z} in \mathbb{Q} $\circ\circ\bullet\circ\circ$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Proof of main theorem

Proposition 3.3 (Daans, 2018)

We have

$$\bigcup_{p\in\mathbb{P}}p\mathbb{Z}_{(p)}=\bigcup_{\substack{a,b>0\\v_2(b)=0}}J^{-a}(-a,-2b)\cap J^{-2a}(-a,-2b).$$

Proof:

Ramification sets & existential predicates $_{\rm OOOOOOO}$

Defining \mathbb{Z} in \mathbb{Q} $\circ\circ\circ\circ\circ$

Proof of main theorem

Proof of Theorem 1.4:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Outlook

Tomorrow, I will talk about:

• the proof of Proposition 2.3, i.e. the existential definability of $\bigcap_{p \in \Delta(a,b)} \mathbb{Z}_{(p)}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Tomorrow, I will talk about:

- the proof of Proposition 2.3, i.e. the existential definability of $\bigcap_{p \in \Delta(a,b)} \mathbb{Z}_{(p)}$.
- What was essentially used in this proof about existential definability and ramification sets? How can we generalise, e.g. to number fields (= finite extensions of Q)?

Ramification sets & existential predicates $_{\rm OOOOOOO}$

...

Defining $\mathbb Z$ in $\mathbb Q$ 00000

C I I I

References

[D 00]

N 1 *

.....

[Daa20]	fields". https://arxiv.org/abs/1812.04372. Mar. 2020.
[Koe16]	Jochen Koenigsmann. "Defining \mathbb{Z} in \mathbb{Q} ". In: Annals of Mathematics. 183 (2016), pp. 73–93.
[Par13]	Jennifer Park. "A universal first-order formula defining the ring of integers in a number field". In: <i>Math. Res. Lett.</i> 20 nr. 5 (2013), pp. 961–980.
[Poo09]	Bjorn Poonen. "Characterizing integers among rational numbers with a universal-existential formula". In: <i>Amer. J. Math.</i> 131 (2009), pp. 675–682.
[Rob49]	Julia Robinson. "Definability and decision problems in arithmetic". In: Journal of Symbolic Logic 14 (Feb. 1949), pp. 98–114. DOI:

C 1. 1

. .

1.1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Nicolas Daans *E-mail*: nicolas.daans@uantwerpen.be

10.2307/2266510.