A universal definition of $\mathbb Z$ in $\mathbb Q$

Nicolas Daans

University of Antwerp

July 7, 2020

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

 299

KORK ERKER ADA ADA KORA

[Existential and universal definitions in number theory](#page-1-0)

Let $\mathcal L$ always be the first-order language of rings. Let K be a field. Which subrings of K are (existentially, universally) \mathcal{L}_K -definable in K?

KORK EXTERNE PROVIDE

[Existential and universal definitions in number theory](#page-1-0)

Let $\mathcal L$ always be the first-order language of rings. Let K be a field. Which subrings of K are (existentially, universally) \mathcal{L}_K -definable in K?

Theorem 1.1 (J. Robinson, 1949)

 $\mathbb Z$ has a first-order $\mathcal L$ -definition in $\mathbb O$.

It then follows from the undecidability of $\text{Th}(\mathbb{Z})$ that the first-order theory of $\mathbb Q$ is undecidable.

KORK EXTERNE PROVIDE

[Existential and universal definitions in number theory](#page-1-0)

Let $\mathcal L$ always be the first-order language of rings. Let K be a field. Which subrings of K are (existentially, universally) \mathcal{L}_K -definable in K?

Theorem 1.1 (J. Robinson, 1949)

 $\mathbb Z$ has a first-order $\mathcal L$ -definition in $\mathbb O$.

It then follows from the undecidability of $\text{Th}(\mathbb{Z})$ that the first-order theory of $\mathbb O$ is undecidable.

Theorem 1.2 (Poonen, 2009)

Z has an ∀∃L-definition in Q.

KORK ERKER ADA ADA KORA

[Existential and universal definitions in number theory](#page-1-0)

Question 1.3

Does $\mathbb Z$ have an existential $\mathcal L$ -definition in $\mathbb Q$?

If the answer were yes, it would follow from the undecidability of Th ∇ [\mathbb{Z}) that the existential first-order theory of \mathbb{O} is also undecidable.

KORK EXTERNE PROVIDE

[Existential and universal definitions in number theory](#page-1-0)

Question 1.3

Does $\mathbb Z$ have an existential $\mathcal L$ -definition in $\mathbb Q$?

If the answer were yes, it would follow from the undecidability of Th ∇ [\mathbb{Z}) that the existential first-order theory of \mathbb{O} is also undecidable.

Theorem 1.4 (Koenigsmann, 2010)

 $\mathbb Z$ has a universal $\mathcal L$ -definition in $\mathbb O$.

[Existential and universal definitions in number theory](#page-1-0)

Question 1.3

Does $\mathbb Z$ have an existential $\mathcal L$ -definition in $\mathbb Q$?

If the answer were yes, it would follow from the undecidability of Th ∇ [\mathbb{Z}) that the existential first-order theory of \mathbb{O} is also undecidable.

Theorem 1.4 (Koenigsmann, 2010)

 $\mathbb Z$ has a universal $\mathcal L$ -definition in $\mathbb O$.

Theorem 1.5 (Park, 2012)

Let K be a number field. The ring of integers \mathcal{O}_K has a universal Λ-definition in K.

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

[Outline](#page-7-0)

Plan for the rest of the talk:

Give a proof of Koenigsmann's Theorem (universal definability of $\mathbb Z$ in $\mathbb Q$).

KORK ERKER ADAM ADA

[Outline](#page-7-0)

Plan for the rest of the talk:

Explain how (properties of) quaternion algebras over global and local fields play a role in obtaining these results.

Give a proof of Koenigsmann's Theorem (universal definability of $\mathbb Z$ in $\mathbb Q$).

[Outline](#page-7-0)

Plan for the rest of the talk:

- Explain how (properties of) quaternion algebras over global and local fields play a role in obtaining these results.
- Mention some existentially definable "building blocks" from which we will build our definition.
- Give a proof of Koenigsmann's Theorem (universal definability of $\mathbb Z$ in $\mathbb Q$).

[The ramification set](#page-10-0)

Denote by $\mathbb P$ the set of prime numbers and set $\mathbb P' = \mathbb P \cup \{\infty\}.$ Define $\mathbb{Q}_{\infty} = \mathbb{R}$. For $a, b \in \mathbb{Q}^{\times}$, define the *ramification set* of the quaternion algebra (a, b) ₀ as follows:

 $\Delta(a,b)=\{ \rho \in \mathbb{P}' \mid (a,b)_{\mathbb{Q}_\rho} \text{ is non-split} \}.$

[The ramification set](#page-10-0)

Denote by $\mathbb P$ the set of prime numbers and set $\mathbb P' = \mathbb P \cup \{\infty\}.$ Define $\mathbb{Q}_{\infty} = \mathbb{R}$. For a, $b \in \mathbb{Q}^{\times}$, define the *ramification set* of the quaternion algebra (a, b) ₀ as follows:

$$
\Delta(a,b)=\{ \rho \in \mathbb{P}' \mid (a,b)_{\mathbb{Q}_p} \text{ is non-split}\}.
$$

Recall: $(a, b)_{\mathbb{Q}} \cong (ac^2, bd^2)_{\mathbb{Q}}$ for $a, b, c, d \in \mathbb{Q}^{\times}$, whence $\Delta(a, b) = \Delta(ac^2, bd^2).$

[The ramification set](#page-10-0)

Proposition 2.1 (Computation of the ramification set)

Let a, $b \in \mathbb{Z} \setminus \{0\}$ be square-free.

- $\bullet \infty \in \Delta(a, b)$ if and only if $a < 0$ and $b < 0$.
- **2** For $p \in \mathbb{P} \setminus \{2\}$ we have $p \in \Delta(a, b)$ if and only if one of the following holds
	- $v_p(a) = 1$, $v_p(b) = 0$ and b is not a square mod p
	- $v_p(a) = 0$, $v_p(b) = 1$ and a is not a square mod p
	- $v_p(a) = 1 = v_p(b)$ and $-\overline{ab}$ is not a square mod p
- \bigodot (Hilbert Reciprocity) $|\Delta(a, b)|$ is an even natural number.

Note: this allows us to fully compute the ramification set of a given quaternion algebra over $\mathbb Q$ (we can scale any $a, b \in \mathbb Q^\times$ be a square to obtain a square-free element of $\mathbb{Z} \setminus \{0\}$).

[Introduction](#page-1-0) **[Ramification sets & existential predicates](#page-10-0)** [Defining](#page-20-0) ℤ in Q
 Defining ℤ in Q
 Defining Z in Q

KORK EXTERNE PROVIDE

[The ramification set](#page-10-0)

Lemma 2.2

Let p, q be positive prime numbers such that $q \equiv 5$ mod 8 and q is not a square modulo p. We have:

$$
\{p,\infty\} = \begin{cases} \Delta(-1,-2) & \text{if } p=2\\ \Delta(-1,-2p) & \text{if } p \equiv -1 \bmod 4\\ \Delta(-p,-2) & \text{if } p \equiv 5 \bmod 8\\ \Delta(-q,-2p) & \text{if } p \equiv 1 \bmod 8 \end{cases}
$$

Proof: Exercise.

 00000

KORK ERKER ADAM ADA

[Existentially definable building blocks](#page-14-0)

For $a, b \in \mathbb{Q}^{\times}$, define

$$
T(a,b)=\bigcap_{p\in \Delta(a,b)}\mathbb{Z}_{(p)}
$$

where (for technical reasons) we set $\mathbb{Z}_{(\infty)} =]-4,4[$.

[Existentially definable building blocks](#page-14-0)

For $a, b \in \mathbb{Q}^{\times}$, define

$$
T(a,b)=\bigcap_{p\in \Delta(a,b)}\mathbb{Z}_{(p)}
$$

where (for technical reasons) we set $\mathbb{Z}_{(\infty)} =]-4,4[$.

Proposition 2.3 (Poonen, Koenigsmann)

There exists an existential \mathcal{L} -formula ψ in 3 free variables such that for all a, $b \in \mathbb{Q}^{\times}$ we have

$$
T(a,b) = \{x \in \mathbb{Q} \mid \mathbb{Q} \models \psi(x,a,b)\}
$$

Proof: tomorrow.

KORK ERKER ADA ADA KORA

[Existentially definable building blocks](#page-14-0)

Corollary 2.4

For every $p \in \mathbb{P}$ the ring

$$
\mathbb{Z}_{(p)} = \{x \in \mathbb{Q} \mid v_p(x) \ge 0\}
$$

has an existential definition in Q.

Proof: Exercise. Already implicit in Robinson's work.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Existentially definable building blocks](#page-14-0)

For $c \in \mathbb{Q}^{\times}$, define

$$
Odd(c) = \{p \in \mathbb{P} \mid v_p(c) \text{ is odd}\}
$$

and for $a, b, c \in \mathbb{Q}^{\times}$, set

$$
J^c(a,b)=\bigcap_{\rho\in\Delta(a,b)\cap\text{Odd}(c)}\rho\mathbb{Z}_{(p)}.
$$

[Introduction](#page-1-0) **Intervention School Communist Predicates** [Defining](#page-20-0) Z in Q and Defining Z in Q and Defining Z in Q

[Existentially definable building blocks](#page-14-0)

For $c \in \mathbb{Q}^{\times}$, define

$$
Odd(c) = \{p \in \mathbb{P} \mid v_p(c) \text{ is odd}\}
$$

and for $a, b, c \in \mathbb{Q}^{\times}$, set

$$
J^c(a,b)=\bigcap_{p\in \Delta(a,b)\cap \text{Odd}(c)} p\mathbb{Z}_{(p)}.
$$

Lemma 2.5

We have

$$
J^{c}(a,b)=\mathcal{T}(a,b)\cdot\left(\left(\mathbf{c}\cdot(\Box\mathsf{K})\right)\cap\left(1-\left(\Box\mathsf{K}\right)\cdot\mathcal{T}(a,b)^{\times}\right)\right).
$$

Proof: Exercise.

KORK EXTERNE PROVIDE

Corollary 2.6 (Koenigsmann)

There exists an existential \mathcal{L} -formula ψ in 4 free variables such that for all a, b, $c \in \mathbb{Q}^{\times}$ we have

$$
J^{c}(a,b)=\{x\in K\mid K\models\psi(x,a,b,c)\}
$$

Proof sketch:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[First steps](#page-20-0)

Lemma 3.1

If $\bigcup_{p \in \mathbb{P}} p \mathbb{Z}_{(p)}$ has an existential $\mathcal L$ -definition in $\mathbb Q$, then $\mathbb Z$ has a universal L-definition in Q.

Proof:

[Introduction](#page-1-0) [Ramification sets & existential predicates](#page-10-0) OOO 0000000

$$
\underset{\text{O}\bullet\text{O}\text{O}}{\text{Defining}}\ \mathbb{Z}\ \text{in}\ \mathbb{Q}
$$

[First steps](#page-20-0)

Lemma 3.2

Let
$$
a, b \in \mathbb{Q}^{\times}
$$
, $v_2(b) = 0$. Then

$$
J^{-a}(-a,-2b)\cap J^{-2b}(-a,-2b)=\bigcap_{p\in\Delta(-a,-2b)\cap\mathbb{P}}p\mathbb{Z}_{(p)}.
$$

Proof:

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Proof of main theorem](#page-22-0)

Proposition 3.3 (Daans, 2018)

We have

$$
\bigcup_{p\in\mathbb{P}}p\mathbb{Z}_{(p)}=\bigcup_{\substack{a,b>0\\v_2(b)=0}}J^{-a}(-a,-2b)\cap J^{-2a}(-a,-2b).
$$

Proof:

[Proof of main theorem](#page-22-0)

Proof of Theorem [1.4:](#page-4-0)

[Outlook](#page-24-0)

[Introduction](#page-1-0) [Ramification sets & existential predicates](#page-10-0) [Defining](#page-20-0) Z in Q

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Tomorrow, I will talk about:

• the proof of Proposition [2.3,](#page-14-1) i.e. the existential definability of $\bigcap_{p\in \Delta(a,b)}\mathbb{Z}_{(p)}$.

KORK ERKER ADAM ADA

[Outlook](#page-24-0)

Tomorrow, I will talk about:

- **•** the proof of Proposition [2.3,](#page-14-1) i.e. the existential definability of $\bigcap_{p\in \Delta(a,b)}\mathbb{Z}_{(p)}$.
- What was essentially used in this proof about existential definability and ramification sets? How can we generalise, e.g. to number fields (= finite extensions of \mathbb{Q})?

 00000

KORKARYKERKER POLO

References

- [Koe16] Jochen Koenigsmann. "Defining $\mathbb Z$ in $\mathbb Q$ ". In: Annals of Mathematics. 183 (2016), pp. 73–93.
- [Par13] Jennifer Park. "A universal first-order formula defining the ring of integers in a number field". In: Math. Res. Lett. 20 nr. 5 (2013), pp. 961–980.
- [Poo09] Bjorn Poonen. "Characterizing integers among rational numbers with a universal-existential formula". In: Amer. J. Math. 131 (2009), pp. 675–682.
- [Rob49] Julia Robinson. "Definability and decision problems in arithmetic". In: Journal of Symbolic Logic 14 (Feb. 1949), pp. 98-114. DOI: [10.2307/2266510](https://doi.org/10.2307/2266510).

Nicolas Daans E-mail: <nicolas.daans@uantwerpen.be>