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Global fields Approximation and S-sets Universal definitions

Places on global fields

A global field is a field K which is either

a finite extension of Q, or

a finite extension of Fp(T ) for some prime number p.

In the first case we call K a number field, in the second case a
global function field.
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Places on global fields

Let K be a global field.

There are a finite number of embeddings K → R (possibly 0).

For every Z-valuation v on K , the completion Kv is a local
field into which K embeds.

Given a field K , we call the embeddings into R and completions
places of K , indexed by a set P′(K ) (or simply P′ if the field is
clear from context). Embeddings into R are also called
archimedean, infinite or real places, whereas completions are also
called non-archimedean or finite places. Let us index the set of
finite places by P(K ) (or P if the field is clear from context). For
p ∈ P′(K ) we denote by Kp the local field (or R) into which p is an
embedding; by abuse of notation we consider K to be a subfield of
Kp.
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Places on global fields

Theorem 1.1 (Hasse-Minkowski)

Let K be a global field, Q a quaternion algebra defined over K .
Then Q is split if and only if QKp is split for every p ∈ P′(K ).

E.g. over Q, a quaternion algebra Q is split if and only if it is split
over R and Qp for every prime number p.

We write Qp as shorthand for QKp .
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Recap: S-sets

Recall: for a quaternion algebra Q over a field K , define

S(Q) = {Trd(x) | x ∈ Q \ K ,Nrd(x) = 1} ⊆ K .

This set is existentially definable in the language of rings L,
uniformly in the parameters defining Q. More precisely:

Proposition 1.2

Let ϕ(x , a, b) be L-formula

∃z1, z2, z3 : 1
.

= az2
1 + bz2

2 + (4− x2)abz2
3 .

Then for every field K with char(K ) 6= 2 and a, b ∈ K× we have

S((a, b)K ) = {x ∈ K | K |= ϕ(x , a, b)}.

Note: we might write S(a, b) instead of S((a, b)K ).
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Recap: S-sets

Some previously discussed properties:

Proposition 1.3

1 S(Q) = K ⇔ Q is split.
2 If K is a local field with valuation ring O and Q is the unique

non-split quaternion algebra over K , then
1 S(Q) + S(Q) = O,
2 S(Q) is open with respect to the v -adic topology.

3 If K = R and Q is non-split, then S(Q) =]− 2, 2[.

4 If K is a global field, then

S(Q) =
⋂

p∈P′(K)

S(Qp) ∩ K .

Suppose now that K is a global field and Q a quaternion algebra
defined over K . What is S(Q) + S(Q)?
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Ramification sets

For a quaternion algebra Q over a global field K , define its
ramification set as follows:

∆Q = {p ∈ P′(K ) | QKp is non-split}

Note: the Hasse-Minkowski theorem says precisely that Q is split if
and only if ∆Q = ∅.
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S(Q) + S(Q)

For a global field K and a quaternion algebra Q defined over K ,
define

T (Q) =
⋂

p∈∆Q

Op

where Op is the valuation ring corresponding to p if it is a finite
place, or the preimage of the interval ]− 4, 4[ if it is an infinite
place. As before, for a, b ∈ K×, we might write T (a, b) instead of
T ((a, b)K ).

Theorem 1.4 (Poonen, Koenigsmann, 2010)

Let K be a global field, Q a quaternion algebra defined over K .
One has

S(Q) + S(Q) = T (Q).
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Outline

Plan for today:

Give a proof of the Poonen-Koenigsmann Theorem, derive
existential predicate, finish the proof of universal definability
of Z in Q.

Discuss generalisations of universal definability of Z in Q to
other (global and non-global) fields.
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Topologies induced by places

Let K be a field. For each place p, there is a natural topology on
Kp (called the p-topology) making Kp into a topological field:

If p is an embedding K → R, then the p-topology is the
Euclidean topology on R.

For every Z-valuation v on K , the topology on the completion
Kv has basic open sets

{x ∈ Kv | v(x − x0) > n}

for x0 ∈ Kv , n ∈ N.
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Artin-Whaples

Theorem 2.1 (Artin-Whaples)

Let K be a field. Endowing
∏

p∈P′(K) Kp with the product
topology, K is a dense subspace.

When P′(K ) consists only of finite places, this theorem follows
from the so-called Weak Approximation Theorem from valuation
theory.
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S(Q) + S(Q)

Lemma 2.2

Let K be a field, S ⊆ P′(K ) a finite set. For each p ∈ S , let Ap

and Bp be subsets of Kp which are open w.r.t. the p-topology on
Kp. Then ⋂

p∈S
Ap ∩ K +

⋂
p∈S

Bp ∩ K =
⋂
p∈S

(Ap + Bp) ∩ K .

Proof:
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S(Q) + S(Q)

Proof of Theorem 1.4:
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Existential predicate

The theorem tells us that for all a, b ∈ K× we have

T (a, b) = S(a, b) + S(a, b).

Since S(a, b) is existentially definable in K (uniformly in a and b)
and for x ∈ K one has x ∈ S(a, b) + S(a, b) if and only if there
exists a t ∈ K with t ∈ S(a, b) and x − t ∈ S(a, b), we obtain the
following:

Corollary 2.3

There exists an existential L-formula ψ in 3 free variables such
that for all a, b ∈ K× we have

T (a, b) = {x ∈ K | K |= ψ(x , a, b)}

This was the missing piece in the proof of the universal definability
of Z in Q in last talk.
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Universal definability in global fields

Theorem 3.1 (Koenigsmann, 2010)

Z has a universal first-order definition in Q.

Can we generalise this result to other global fields?

Theorem 3.2 (Park, 2012)

Let K be a number field. The ring of integers OK has a universal
LK -definition in K .
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Rings of S-integers

K a global field, S ⊆ P(K ) finite. The ring of S-integers is defined
to be

OS =
⋂

p∈P(K)\S

Op

where Op is the valuation ring corresponding to the finite place p.
Examples:

K a number field. Then O∅ = OK . In particular, if K = Q,
O∅ = Z.

K a global function field with field of constants Fq. O∅ = Fq.

K = Fq(T ) with Fq a finite field, S = {v∞}. Then
OS = Fq[T ].
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Rings of S-integers

Theorem 3.3 (Eisenträger and Morrison, 2017)

Let K be a global function field of odd characteristic, S a finite set
of Z-valuations on K . Then OS has a universal LK -definition in K .

The original proofs of Koenigsmann, Park, Eisenträger and
Morrison rely on dividing the primes up in several ray classes and
using fancier results from class field theory. By relying more on the
use of Hilbert Reciprocity, one can combine and extend the proofs.

Theorem 3.4 (Daans, 2018)

Let K be a global field, S a finite set of Z-valuations on K . Then
OS has a universal LK -definition in K .
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Finitely generated subrings

Rings of S-integers of a global field K (for some finite set
S ⊆ P(K )) are precisely the finitely generated, integrally closed
subrings of K with K as their fraction field. We can extend the
result to non-integrally closed subrings:

Corollary 3.5

Let K be a global field, R ⊆ K a finitely generated subring with
K = Frac(R). Then R has a universal LK -definition in K .
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Proof dissection

What were the key ingredients used which we needed in the proof
of universal definability of Z in Q? Essentially:

that we have an existential L-formula associating to (the
parameters defining) a quaternion algebra a finite intersection
of valuation rings, indexed by the ramification set of the
quaternion algebra (Corollary 2.3).

a good description of the ramification set, in particular
Hilbert’s Reciprocity law (that ∆(a, b) always contains an
even number of elements)
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Outlook: universal definability in function fields over Qp

Consider the case where F is an algebraic function field over a
local field K . Let V be the set of Z-valuations which are trivial on
K×. We can do something similar to obtain universal definability
of rings of S-integers for some finite subset S ⊆ V.

3-fold Pfister forms (octonion algebras) replace quaternions

The ramification set

∆(a, b, c) = {v ∈ V | 〈〈a, b, c〉〉Fv is anisotropic}

satisfies a Reciprocity Law, i.e. its image consists precisely of
the finite subsets of V of even cardinality.

There is an existential formula associating to (a, b, c) ∈ (F×)3

the subring
⋂

v∈∆(a,b,c)Ov . This is the topic of my next two
talks.
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