Valuations on function fields

Nicolas Daans

University of Antwerp

July 9, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Existential definitions and valuations

 Recall: to find an existential definition of valuation rings of *F_p(T)* (and later a universal definition of *F_p[T]*) we used the existence of a local-global principle with respect to the discrete valuations on *F_p(T)*.

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Existential definitions and valuations

- Recall: to find an existential definition of valuation rings of *F_p(T)* (and later a universal definition of *F_p[T]*) we used the existence of a local-global principle with respect to the discrete valuations on *F_p(T)*.
- We want to do the same in Q_p(T), i.e. find an existential definition of valuation rings containing Q_p.

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

Existential definitions and valuations

- Recall: to find an existential definition of valuation rings of *F_p(T)* (and later a universal definition of *F_p[T]*) we used the existence of a local-global principle with respect to the discrete valuations on *F_p(T)*.
- We want to do the same in Q_p(T), i.e. find an existential definition of valuation rings containing Q_p.
- Problem: we have a local-global principle for quadratic forms with respect to the discrete valuations on Q_p(T), but not with respect to just those valuations trivial on Q_p.

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

Existential definitions and valuations

- Recall: to find an existential definition of valuation rings of *F_p(T)* (and later a universal definition of *F_p[T]*) we used the existence of a local-global principle with respect to the discrete valuations on *F_p(T)*.
- We want to do the same in Q_p(T), i.e. find an existential definition of valuation rings containing Q_p.
- Problem: we have a local-global principle for quadratic forms with respect to the discrete valuations on Q_p(T), but not with respect to just those valuations trivial on Q_p.

Sometimes, even when we want to talk only about a restricted set of valuations on a field, it is necessary to consider a larger class of valuations.

Completions, quadratic forms & coarsenings

Function fields over local fields

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Outline

Plan for today:

• Discuss some interactions between (complete) valuations and quadratic forms,

Completions, quadratic forms & coarsenings

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Plan for today:

- Discuss some interactions between (complete) valuations and quadratic forms,
- apply this to function fields over local fields to prepare for the definability results from next talk,

Completions, quadratic forms & coarsenings

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

Plan for today:

- Discuss some interactions between (complete) valuations and quadratic forms,
- apply this to function fields over local fields to prepare for the definability results from next talk,
- discuss existential definability of the field of constants in function fields.

Completions, quadratic forms & coarsenings

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Condition for isotropy over completion

Proposition 2.1

Let K be a field with $char(K) \neq 2$, v a \mathbb{Z} -valuation on K. Let $q(X_1, \ldots, X_k) = \sum_{i=1}^k b_i X_i^2$ be a quadratic form defined over K for some $b_1, \ldots, b_k \in K$. The following are equivalent:

1 q is isotropic over the completion K_v .

2 There exist $x_1, \ldots, x_k \in K$ such that

$$v(q(x_1,...,x_k)) > \min_{i=1}^k v(b_i x_i^2) + v(4).$$

Proof:

Completions, quadratic forms & coarsenings $\circ \bullet \circ \circ$

Function fields over local fields

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Coarsening

Let F be a field, K a subfield, w a valuation on F such that $wK^{\times} \neq 0$. Consider the following subset of F:

$$\mathcal{O}_w^{(K)} = \{ax \mid a \in K, x \in \mathfrak{m}_w\}.$$

Proposition 2.2

 $\mathcal{O}_{w}^{(K)}$ is the smallest valuation ring on F containing \mathcal{O}_{w} and K.

An valuation w' which has $\mathcal{O}_{w}^{(K)}$ as its valuation ring is called a *K*-coarsening of w. It is determined uniquely up to equivalence.

Coarsening

Proof:

Completions, quadratic forms & coarsenings $\circ \circ \circ \circ$

Function fields over local fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Completions, quadratic forms & coarsenings $\circ \circ \circ \bullet$

Function fields over local fields

The space of valuations

Let K be a field. Denote by \mathcal{V} (Sylvy's $S_{val}(K)$) the set of all valuations on K up to equivalence (or equivalently, the set of all valuation rings on K). We endow \mathcal{V} with a topology called the *constructible topology* with basic clopen sets

 $\{v \in \mathcal{V} \mid v(x) \ge 0\}$

for $x \in K$.

Completions, quadratic forms & coarsenings $\circ \circ \circ \bullet$

Function fields over local fields

(日)

The space of valuations

Let K be a field. Denote by \mathcal{V} (Sylvy's $S_{val}(K)$) the set of all valuations on K up to equivalence (or equivalently, the set of all valuation rings on K). We endow \mathcal{V} with a topology called the *constructible topology* with basic clopen sets

$$\{v \in \mathcal{V} \mid v(x) \ge 0\}$$

for $x \in K$.

Proposition 2.3

 $\mathcal V$ is compact with respect to the constructible topology.

Proof idea: Endow $\mathcal{P}(K)$ with the product topology. By Tychonoff's theorem (Axiom of Choice!) this space is compact. Show that the natural injection

$$\mathcal{V} \to \mathcal{P}(K) : v \mapsto \mathcal{O}_v$$

is a closed immersion.

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Valuations on function fields

Let for the rest of the talk F be an algebraic function field over a local field (K, v) of characteristic different from 2. Let \mathcal{V} be the space of valuations of F, \mathcal{V}_0 the subspace of valuations trivial on K. Fix a uniformiser π of v and let \mathcal{V}_{π} be the subspace of \mathcal{V} of *discrete* valuations w for which $w(\pi) > 0$.

For a quadratic form q defined over F, define the following sets:

$$\Delta_0 q = \{ w \in \mathcal{V}_0 \mid q \text{ anisotropic over } F_w \}$$

 $\Delta_\pi q = \{ w \in \mathcal{V}_\pi \mid q \text{ anisotropic over } F_w \}$

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

Valuations on function fields

Let for the rest of the talk F be an algebraic function field over a local field (K, v) of characteristic different from 2. Let \mathcal{V} be the space of valuations of F, \mathcal{V}_0 the subspace of valuations trivial on K. Fix a uniformiser π of v and let \mathcal{V}_{π} be the subspace of \mathcal{V} of *discrete* valuations w for which $w(\pi) > 0$.

For a quadratic form q defined over F, define the following sets:

$$\Delta_0 q = \{ w \in \mathcal{V}_0 \mid q \text{ anisotropic over } F_w \}$$

 $\Delta_\pi q = \{ w \in \mathcal{V}_\pi \mid q \text{ anisotropic over } F_w \}$

Proposition 3.1 (Kato, 1986)

Let q be a three-fold Pfister form defined over F. If $\Delta_{\pi}q = \emptyset$, then q is isotropic over F.

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

Valuations on function fields

Let for the rest of the talk F be an algebraic function field over a local field (K, v) of characteristic different from 2. Let \mathcal{V} be the space of valuations of F, \mathcal{V}_0 the subspace of valuations trivial on K. Fix a uniformiser π of v and let \mathcal{V}_{π} be the subspace of \mathcal{V} of *discrete* valuations w for which $w(\pi) > 0$.

For a quadratic form q defined over F, define the following sets:

$$\Delta_0 q = \{ w \in \mathcal{V}_0 \mid q \text{ anisotropic over } F_w \}$$

 $\Delta_\pi q = \{ w \in \mathcal{V}_\pi \mid q \text{ anisotropic over } F_w \}$

Proposition 3.1 (Kato, 1986)

Let q be a three-fold Pfister form defined over F. If $\Delta_{\pi}q = \emptyset$, then q is isotropic over F.

Remark: if $w \in \mathcal{V}_{\pi}$, then $\mathcal{O}_w \cap K = \mathcal{O}_v$.

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Passing between $\Delta_0 q$ and $\Delta_{\pi} q$

Proposition 3.2

Let $x \in \bigcap_{w \in \Delta_0 q} \mathcal{O}_w$, where q is a quadratic form defined over F. Then there exists an $a \in K^{\times}$ such that $ax \in \bigcap_{w \in \Delta_{\pi} q} \mathfrak{m}_w$.

Proof:

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Defining fields of constants

Assume now additionally that F/K is a regular extension (without loss of generality if char(K) = 0). Let \mathcal{L} be the language of rings.

Proposition 3.3

K has an existential \mathcal{L} -definition in F. More specifically, for $d \in \mathbb{N}$ sufficiently large, we have for all $t \in F$ that

$$t \in \mathcal{K} \ \Leftrightarrow \ \mathcal{F} \models \exists y, x_1, x_2(1 \doteq y^2(x_1^d - x_1) \wedge t^2 \doteq y^2(x_2^d - x_2)).$$

Completions, quadratic forms & coarsenings 0000

Function fields over local fields

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Defining fields of constants

Consider the following (hyper)elliptic curve, for $d \in \mathbb{N}$, $d \geq 3$:

$$E_d: Y^2 = X^d - X$$

Completions, quadratic forms & coarsenings

Function fields over local fields

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Defining fields of constants

Consider the following (hyper)elliptic curve, for $d \in \mathbb{N}$, $d \geq 3$:

$$E_d: Y^2 = X^d - X$$

Lemma 3.4

Denote by \mathfrak{m}_v the maximal ideal of the complete valuation ring on K. We have for all $d\geq 3$

$$\mathfrak{m}_{\nu} \subseteq \{y \in K \mid \exists x \in K : y^2 = x^d - x\}.$$

Proof:

Completions, quadratic forms & coarsenings

Function fields over local fields

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Defining fields of constants

If $g \in \mathbb{N}$ and d = 2g + 3, the irreducible plane curve E_d has genus g + 1.

Proposition 3.5

Let C be an irreducible plane curve defined over K. If the genus of C is greater than the genus of F, then all F-rational points of C are K-rational.

Proof:

Completions, quadratic forms & coarsenings $_{\rm OOOO}$

Function fields over local fields

Defining fields of constants

Proof of Proposition 3.3:

Completions, quadratic forms & coarsenings

Function fields over local fields

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Defining fields of constants

Koenigsmann showed that, for a function field in one variable F over a field K, it suffices to assume that K is *large* (in the sense of F. Pop) to obtain existential \mathcal{L} -definability of the field of constants. Examples of large fields:

- henselian valued fields,
- algebraically closed, real closed, or separably closed fields.

Completions, quadratic forms & coarsenings 0000

Function fields over local fields

References

[Dit19] Philip Dittmann. "Defining Subrings in Finitely Generated Fields of All Characteristics". https://arxiv.org/abs/1810.09333. Apr. 2019.

[Kat86] Kazuya Kato. "A Hasse principle for two dimensional global fields.". In: Journal für die reine und angewandte Mathematik 366 (1986), pp. 142–180. URL: http://eudml.org/doc/152817.

[Koe02] Jochen Koenigsmann. "Defining transcendentals in function fields". In: J. Symbolic Logic 67.3 (Sept. 2002), pp. 947–956. DOI: 10.2178/jsl/1190150142. URL: https://doi.org/10.2178/jsl/1190150142.

Nicolas Daans *E-mail*: nicolas.daans@uantwerpen.be