Defining subrings in p -adic function fields

Nicolas Daans

University of Antwerp

July 10, 2020

★ ロメ (4 御) > (唐) > (唐) → 唐

 299

Let $\mathcal L$ be the language of rings. Let (K, v) be a local field with $char(K) \neq 2$, F an algebraic function field over K. Let V be the space of valuations of F, V_0 the subspace of valuations trivial on K. Fix a uniformiser π of v and let \mathcal{V}_π be the subspace of V of discrete valuations w for which $w(\pi) > 0$.

For a quadratic form q defined over F , define the following sets:

$$
\Delta_0 q = \{ w \in \mathcal{V}_0 \mid q \text{ anisotropic over } F_w \}
$$

$$
\Delta_\pi q = \{ w \in \mathcal{V}_\pi \mid q \text{ anisotropic over } F_w \}
$$

KORKARYKERKER POLO

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
 \overline{O} **OOOOOO**

[-sets of Pfister forms](#page-7-0) [Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0)

KORK ERKER ADAM ADA

[Recap](#page-1-0)

Recall the following from previous talk:

Proposition 1.1 (Kato, 1986)

Let q be a three-fold Pfister form defined over F. If $\Delta_{\pi} q = \emptyset$, then q is isotropic over F.

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
 \overrightarrow{O}

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \circ

KORKARYKERKER POLO

[Recap](#page-1-0)

Recall the following from previous talk:

Proposition 1.1 (Kato, 1986)

Let q be a three-fold Pfister form defined over F. If $\Delta_{\pi} q = \emptyset$, then q is isotropic over F.

Proposition 1.2

Let $x \in \bigcap_{w \in \Delta_0 q} \mathcal{O}_w$, where q is a quadratic form defined over F. Then there exists an $a \in K^{\times}$ such that $ax \in \bigcap_{w \in \Delta_{\pi}q} \mathfrak{m}_w$.

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
 \overrightarrow{O}

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \circ

KORKARYKERKER POLO

[Recap](#page-1-0)

Recall the following from previous talk:

Proposition 1.1 (Kato, 1986)

Let q be a three-fold Pfister form defined over F. If $\Delta_{\pi} q = \emptyset$, then q is isotropic over F.

Proposition 1.2

Let $x \in \bigcap_{w \in \Delta_0 q} \mathcal{O}_w$, where q is a quadratic form defined over F. Then there exists an $a \in K^{\times}$ such that $ax \in \bigcap_{w \in \Delta_{\pi}q} \mathfrak{m}_w$.

Proposition 1.3

K has an existential L-definition in F.

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) 000000

 \circ

KORK ERKER ADA ADA KORA

[Statement & outline](#page-5-0)

Today, we give a proof of the following:

Theorem 1.4

There exists an existential \mathcal{L} -formula φ in 4 free variables such that for all $a, b, c \in F^{\times}$ one has

$$
\bigcap_{v\in\Delta_0\langle\langle a,b,c\rangle\rangle}\mathcal{O}_v=\{x\in F^\times\mid F\models\varphi(x,a,b,c)\}.
$$

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) 000000

 \circ

KORK EXTERNE PROVIDE

[Statement & outline](#page-5-0)

Today, we give a proof of the following:

Theorem 1.4

There exists an existential \mathcal{L} -formula φ in 4 free variables such that for all $a, b, c \in F^{\times}$ one has

$$
\bigcap_{v\in\Delta_0\langle\langle a,b,c\rangle\rangle}\mathcal{O}_v=\{x\in F^\times\mid F\models\varphi(x,a,b,c)\}.
$$

Plan for today:

 \bullet Prove [1.4.](#page-5-1)

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
000

[-sets of Pfister forms](#page-7-0) [Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0)

KORK ERKER ADA ADA KORA

Recall: S[-sets of quaternion algebras](#page-7-0)

Recall that for a field K $(\text{char}(K) \neq 2)$ and a quaternion algebra Q we defined

 $S(Q) = \{ \text{Trd}(\alpha) \mid \alpha \in Q \setminus K, \text{Nrd}(\alpha) = 1 \}$

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
000

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) 000000

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \circ

 2990 D.

Recall: S[-sets of quaternion algebras](#page-7-0)

Recall that for a field K $(\text{char}(K) \neq 2)$ and a quaternion algebra Q we defined

$$
\mathcal{S}(\mathcal{Q}) = \{\mathsf{Trd}(\alpha) \mid \alpha \in \mathcal{Q} \setminus \mathcal{K}, \mathsf{Nrd}(\alpha) = 1\}
$$

Proposition 2.1

One has for $a, b \in K^\times$ with $Q = (a, b)_K$

$$
S(Q) = \{x \in K \mid Q_{K(\sqrt{x^2-4})} \text{ is split}\}
$$

= $\{x \in K \mid \langle \langle a, b \rangle \rangle_{K(\sqrt{x^2-4})} \text{ is isotropic}\}$
= $\{x \in K \mid \langle x^2 - 4, -a, -b, ab \rangle_K \text{ is isotropic}\}$

Proof: Exercise.

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \circ

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Pfister forms and quadratic extensions](#page-9-0)

Recall: an *n*-fold Pfister from over a field K $(\text{char}(K) \neq 2)$ is a quadratic form isometric to

$$
\langle 1,-a_1\rangle_K\otimes\cdots\otimes\langle 1,-a_n\rangle_K
$$

for certain $a_1,\ldots,a_n\in K^\times$. It is then denoted $\langle\langle a_1,\ldots,a_n\rangle\rangle_{K^\times}$

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)**

 \circ

KORKARYKERKER POLO

[Pfister forms and quadratic extensions](#page-9-0)

Recall: an *n*-fold Pfister from over a field K $(\text{char}(K) \neq 2)$ is a quadratic form isometric to

$$
\langle 1,-a_1\rangle_K\otimes\cdots\otimes\langle 1,-a_n\rangle_K
$$

for certain $a_1,\ldots,a_n\in K^\times$. It is then denoted $\langle\langle a_1,\ldots,a_n\rangle\rangle_{K^\times}$

If π is a Pfister from, we can write it as $\langle 1 \rangle \perp \pi'$ for some quadratic form π' , called the *pure part* of π .

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)**

 \circ

[Pfister forms and quadratic extensions](#page-9-0)

Recall: an *n*-fold Pfister from over a field K $(\text{char}(K) \neq 2)$ is a quadratic form isometric to

$$
\langle 1,-a_1\rangle_K\otimes\cdots\otimes\langle 1,-a_n\rangle_K
$$

for certain $a_1,\ldots,a_n\in K^\times$. It is then denoted $\langle\langle a_1,\ldots,a_n\rangle\rangle_{K^\times}$

If π is a Pfister from, we can write it as $\langle 1 \rangle \perp \pi'$ for some quadratic form π' , called the *pure part* of π . Becher mentioned:

Proposition 2.2

Let π be a Pfister form over K, $d \in K^\times$. Then $\pi_{K[\sqrt{d}]}$ is isotropic if and only if $\langle d \rangle \perp \pi'$ is isotropic over K.

We call $\langle d \rangle \perp \pi'$ the *twist of* π *by d*.

 S_d [-sets](#page-12-0)

For a Pfister form q defined over a field K with $char(K) \neq 2$ and some $d \in K^\times$, we consider the set

$$
S_d(q) = \{x \in K \mid q \text{ is isotropic over } K[\sqrt{x^2 + 4d}] \}
$$

= $\{x \in K \mid \langle x^2 + 4d \rangle_K \perp q' \text{ is isotropic} \}.$

KORKARYKERKER POLO

This set has an existential definition in the language of rings, uniformly in d and the parameters defining q .

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \circ

KORK EXTERNE PROVIDE

[Basic properties](#page-13-0)

Proposition 2.3

Let K be a field with $char(K) \neq 2$, $d \in K^{\times}$, q a Pfister form defined over K.

- **1** If q is isotropic over K, then $S_d(q) = K$.
- **2** If q is anisotropic over K, then $x \in S_d(q)$ implies that x^2+4d is a non-square in K.
- **3** If L/K is a field extension, $S_d(q) \subseteq S_d(q_L)$.

Proof: Clear.

[-sets of Pfister forms](#page-7-0) [Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) 000000

 \circ

KORK EXTERNE PROVIDE

[Basic properties](#page-13-0)

Proposition 2.4

Let K be a field of $char(K) \neq 2$, E a collection of field extensions of K, q a Pfister form over K. Suppose that for all $d \in K^\times$ such that $\langle d \rangle_K \perp q'$ is anisotropic, there exists an $E \in \mathcal{E}$ such that $\langle d \rangle_E \perp q_E'$ is anisotropic. Then

$$
S_d(q)=\bigcap_{E\in\mathcal{E}}(S_d(q_E)\cap K).
$$

Proof: Exercise.

 S_d [-sets of Pfister forms](#page-7-0) [Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) 000000

 \circ

[Basic properties](#page-13-0)

Proposition 2.4

Let K be a field of $char(K) \neq 2$, E a collection of field extensions of K, q a Pfister form over K. Suppose that for all $d \in K^\times$ such that $\langle d \rangle_K \perp q'$ is anisotropic, there exists an $E \in \mathcal{E}$ such that $\langle d \rangle_E \perp q_E'$ is anisotropic. Then

$$
S_d(q)=\bigcap_{E\in\mathcal{E}}(S_d(q_E)\cap K).
$$

Proof: Exercise.

Equivalently, if the Pfister form q satisfies a local-global principle with respect to a collection of valuations over K and all quadratic extensions of K , then the equality of S-sets above holds.

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \circ

KORK EXTERNE PROVIDE

[Over henselian valued fields](#page-16-0)

Proposition 2.5

Let (K, v) be a henselian discretely valued field with $char(K) \neq 2$ and q a Pfister form defined over K . Furthermore, let $x \in \mathcal{K}, d \in \mathcal{K}^{\times}$.

- **1** If q is anisotropic over K, then $x \in S_d(q)$ implies $v(x^2) \geq v(d)$. √
- \bullet If q is isotropic over K[\overline{d}], then v $(x^2)>$ v $(16d)$ implies $x \in S_d(q)$

Proof:

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 00000

 \circ

[Parametrised solution](#page-17-0)

Proposition 3.1

Let q be a three-fold Pfister form defined over F . Let $d \in F^{\times}$ be such that q is isotropic over $\mathsf{F}[\sqrt{\mathsf{d}}]$. Then

$$
K\cdot S_d(q)=\{x\in F\mid \forall w\in \Delta_0 q: w(x^2)\geq w(d)\}.
$$

In particular, if $v(d) = 0$ for all $v \in \Delta_0 q$, then

$$
K\cdot S_d(q/F)=\bigcap_{w\in\Delta_0q}\mathcal{O}_w
$$

Recall that $S_d(q)$ has an existential definition, uniform in c and the parameters defining q. We saw in the last talk that K is existentially definable in F, hence also $K \cdot S_d(q)$ is existentially definable in F, uniformly in d and the para[met](#page-16-0)[ers](#page-18-0)[de](#page-17-0)[fi](#page-18-0)[n](#page-16-0)[in](#page-17-0)[g](#page-21-0) [q](#page-16-0)[.](#page-17-0)

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \circ

KORK EXTERNE PROVIDE

[Parametrised solution](#page-17-0)

Lemma 3.2

Let K be a field with $char(F) \neq 2$, q a quadratic form over K of dimension at least 3, S a finite set of $\mathbb Z$ -valuations on K. There exists a $d \in K^\times$ such that $q_{K[\sqrt{d}]}$ is isotropic and $v(d)=0$ for all $v \in S$.

Proof: Exercise.

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) 000000

 \circ

[Parametrised solution](#page-17-0)

Lemma 3.2

Let K be a field with $\text{char}(F) \neq 2$, q a quadratic form over K of dimension at least 3, S a finite set of $\mathbb Z$ -valuations on K. There exists a $d \in K^\times$ such that $q_{K[\sqrt{d}]}$ is isotropic and $v(d)=0$ for all $v \in S$.

Proof: Exercise.

Let again F be an algebraic function field over a local field (K, v) .

Corollary 3.3

For any three-fold Pfister form q defined over F, the set $\bigcap_{w\in \Delta_0q}\mathcal{O}_w$ is existentially definable in F.

It follows (exercise) that also each \mathcal{O}_{w} for $w \in \mathcal{V}_{0}$ is existentially definable.**KORKARYKERKER POLO**

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
 000
 000000

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0) OO●
OO● OO

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Parametrised solution](#page-17-0)

Proof of Proposition [3.1:](#page-17-1)

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
000 000 000000

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0)

OOOOOO

 \circ

KORK ERKER ADAM ADA

[Eliminating the parameter](#page-21-0) d

• We have shown that there is an existential \mathcal{L} -formula φ in 5 free variables such that for all $a,b,c\in F^\times$ and a good choice for $d \in F^\times$ we have

$$
\bigcap_{v\in\Delta_0\langle\langle a,b,c\rangle\rangle}\mathcal{O}_v=\{x\in F^\times\mid F\models\varphi(x,a,b,c,d)\}.
$$

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** റററ⊜ററ

 \circ

KORKARYKERKER POLO

[Eliminating the parameter](#page-21-0) d

• We have shown that there is an existential \mathcal{L} -formula φ in 5 free variables such that for all $a,b,c\in F^\times$ and a good choice for $d \in F^\times$ we have

$$
\bigcap_{v\in\Delta_0\langle\langle a,b,c\rangle\rangle}\mathcal{O}_v=\{x\in F^\times\mid F\models\varphi(x,a,b,c,d)\}.
$$

We would like to get rid of the need to choose an appropriate $d \in F^{\times}$ (this hinders quantification over the a, b, c when passing to universal formulae).

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
 000
 000000

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0)

ooooooo

KORK ERKER ADAM ADA

[Eliminating the parameter](#page-21-0) d

Proposition 3.4

Let q be a three-fold Pfister form defined over F. Then

$$
\bigcap_{w\in \Delta_0q} \mathcal{O}_w = \bigcup_{d\in \mathcal{C}} \mathcal{K} \cdot \mathcal{S}_d(q)
$$

where

$$
\mathcal{C}=\left\{\frac{e}{(e-1)^2} \ \bigg| \ e\in \mathcal{F}^{\times}, 0\in \mathcal{S}_e(q) \right\}.
$$

Proof:

[Introduction & recap](#page-1-0) S_d S_d -sets of Pfister forms
000
000000

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0)

oooooo

[Eliminating the parameter](#page-21-0) d

Proof of Theorem [1.4:](#page-5-1)

[Parametrised and unparametrised solution](#page-17-0) [Outlook](#page-25-0)
0000000 OOOOO

[Towards universal definitions](#page-25-0)

With this existential formula for $\bigcap_{w\in \Delta_0q}\mathcal O_w$, we can now give universal definitions of rings of S-integers by using information about 'ramification behaviour' of 3-fold Pfister forms over F.

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \bullet

KORK ERKER ADAM ADA

[Towards universal definitions](#page-25-0)

With this existential formula for $\bigcap_{w\in \Delta_0q}\mathcal O_w$, we can now give universal definitions of rings of S-integers by using information about 'ramification behaviour' of 3-fold Pfister forms over F.

The 'ramification behaviour' we needed is contained in the exact sequence

$$
H^3(F) \longrightarrow \bigoplus_{w \in \mathcal{V}_0} H^3(F_w) \cong \bigoplus_{w \in \mathcal{V}_0} \mathbb{Z}/2 \longrightarrow \mathbb{Z}/2 \longrightarrow 0
$$

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \bullet

KORKARYKERKER POLO

[Towards universal definitions](#page-25-0)

With this existential formula for $\bigcap_{w\in \Delta_0q}\mathcal O_w$, we can now give universal definitions of rings of S-integers by using information about 'ramification behaviour' of 3-fold Pfister forms over F.

The 'ramification behaviour' we needed is contained in the exact sequence

$$
H^3(F) \longrightarrow \bigoplus_{w \in \mathcal{V}_0} H^3(F_w) \cong \bigoplus_{w \in \mathcal{V}_0} \mathbb{Z}/2 \longrightarrow \mathbb{Z}/2 \longrightarrow 0
$$

• Reciprocity Law: the ramification sets are precisely the subsets of V_0 containing an even number of elements

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

 \bullet

[Towards universal definitions](#page-25-0)

With this existential formula for $\bigcap_{w\in \Delta_0q}\mathcal O_w$, we can now give universal definitions of rings of S-integers by using information about 'ramification behaviour' of 3-fold Pfister forms over F.

The 'ramification behaviour' we needed is contained in the exact sequence

$$
H^3(F) \longrightarrow \bigoplus_{w \in \mathcal{V}_0} H^3(F_w) \cong \bigoplus_{w \in \mathcal{V}_0} \mathbb{Z}/2 \longrightarrow \mathbb{Z}/2 \longrightarrow 0
$$

- Reciprocity Law: the ramification sets are precisely the subsets of V_0 containing an even number of elements
- $H^3(F)$ (in this case) consists only of symbols (\leftrightarrow Pfister forms)

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

KORK ERKER ADA ADA KORA

[Outlook: algebraic function fields over](#page-29-0) Q

Let F be an algebraic function field over a global field K. Let V be the set of $\mathbb Z$ -valuations which are trivial on K. Can we still universally define rings of S-integers?

Work with 3-fold Pfister forms as before.

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)** 000000

KORKARYKERKER POLO

[Outlook: algebraic function fields over](#page-29-0) Q

Let F be an algebraic function field over a global field K. Let V be the set of \mathbb{Z} -valuations which are trivial on K . Can we still universally define rings of S-integers?

- Work with 3-fold Pfister forms as before.
- There is an existential formula (due to Dittmann and Daans) associating to $(a,b,c)\in (\digamma^\times)^3$ the subring $\bigcap_{\nu\in\Delta(a,b,c)}\mathcal O_\nu$

[Parametrised and unparametrised solution](#page-17-0) **[Outlook](#page-25-0)**

[Outlook: algebraic function fields over](#page-29-0) Q

Let F be an algebraic function field over a global field K. Let V be the set of $\mathbb Z$ -valuations which are trivial on K. Can we still universally define rings of S-integers?

- Work with 3-fold Pfister forms as before.
- There is an existential formula (due to Dittmann and Daans) associating to $(a,b,c)\in (\digamma^\times)^3$ the subring $\bigcap_{\nu\in\Delta(a,b,c)}\mathcal O_\nu$
- More subtle ramification behaviour. The complex

$$
0 \to H^3(K) \to H^3(F) \to \bigoplus_{v \in \mathcal{V}_0} H^3(F_v) \to H^2(K) \to 0
$$

has finite cohomology groups. Elements of $H^3(F)$ might not all be symbols. $H^2(K)$ is much more complicated than $\mathbb{Z}/2.$