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Quadratic forms

Let K be a field.

Definition 1.1

A quadratic space over K is a pair (V, Q) where V is a
finite-dimensional K-vector space, and @ is a map V — K such

that
o Vac K,veV:Q(av) = a*Q(v), and
@ the map
bo: VxV = K:(xy)— Qx+y)—Qx)—Qy)
is bilinear.

We call the map Q a quadratic form over K, and the map bg the
associated bilinear form.
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Quadratic forms

Let K be a field.

Definition 1.1

A quadratic space over K is a pair (V, Q) where V is a
finite-dimensional K-vector space, and @ is a map V — K such
that

o Vac K,veV:Q(av) = a*Q(v), and

@ the map

bo: VXV —=K:(x,y)— Qx+y)— Q(x)— Qy)

is bilinear.

We call the map Q a quadratic form over K, and the map bg the
associated bilinear form.

The dimension of @ is by definition dim(V); we may write this as
dim(Q) as well.
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Quadratic forms

Note: Often, an n-dimensional quadratic form over K is defined to
be a homogeneous degree 2 polynomial H € K[Xy,..., X,]. For
example:

o H(X1, Xa) = X1.X,
o H(X1, Xz, X3) = X2 + X3 — X3,
o H(X1, Xz, X3, Xa) = (X1 + X2)? — 4(Xz — Xy)2.
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Quadratic forms

Note: Often, an n-dimensional quadratic form over K is defined to
be a homogeneous degree 2 polynomial H € K[Xy,..., X,]. For
example:

o H(X1, Xa) = X1.Xz,
o H(X1, X2, X3) = X2+ X2 — X2,
o H(X1, Xz, X3, Xa) = (X1 + X2)? — 4(Xz — Xy)2.
Our definition is simply a coordinate-free reformulation of this.
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Quadratic forms

Proposition 1.2

Let (V, Q) be a quadratic space over K, let (by, ..., b,) be a
K-basis of V.

There exists a homogeneous degree 2 polynomial

H e K[Xi,...,X,] such that for all ay,...,a, € K we have

Q(a1by + ...+ apby) = H(as, ..., an).




Quadratic forms (coordinate-freely)
[e]e] le]e}

Quadratic forms

Proposition 1.2

Let (V, Q) be a quadratic space over K, let (by, ..., b,) be a
K-basis of V.

There exists a homogeneous degree 2 polynomial

H e K[Xi,...,X,] such that for all ay,...,a, € K we have

Q(a1by + ...+ apby) = H(as, ..., an).

Conversely, given a homogeneous degree 2 polynomial
H e K[Xi,...,Xy], the map

K" — K :(a1,...,an) — H(a1,...,an)

is a quadratic form on K".

Proof: Exercise.
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Quadratic forms

We call a quadratic space (V, Q) (or the quadratic form Q)
isotropic if v € V' \ {0} with Q(v) = 0, anisotropic otherwise.
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Quadratic forms

We call a quadratic space (V, Q) (or the quadratic form Q)
isotropic if v € V' \ {0} with Q(v) = 0, anisotropic otherwise.

We call two quadratic spaces (Vi, Q1) and (Va, Qo) isometric

(denoted by (Vi, Q1) = (V2, Q) or simply Q1 = @) if there exists
an isomorphism of K-vector spaces ¢ : V; — V, such that

@2(e(v)) = Q1(v) for all v € Vi.
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Quadratic forms

We call a quadratic space (V, Q) (or the quadratic form Q)
isotropic if v € V' \ {0} with Q(v) = 0, anisotropic otherwise.

We call two quadratic spaces (Vi, Q1) and (Va, Qo) isometric

(denoted by (Vi, Q1) = (V2, Q) or simply Q1 = @) if there exists
an isomorphism of K-vector spaces ¢ : V; — V, such that

@2(e(v)) = Q1(v) for all v € Vi.
For quadratic spaces (Vi, Q1) and (V2, Q2), we define its

orthogonal sum (V4, Q1) L (V2, Q2) as the space V; x V5 with the
form

QL@ VixWL—osK: (V]_, V2) — Q(Vl) + Q(VZ)-
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Quadratic forms

If (V, Q) is a quadratic space over K and L/K a field extension,
we denote by (V£, QL) the extension of (V, Q) to L,

ie. VI =V ®k L and QL is such that QL (x ® a) = a?Q(x) for
x € Vand a€ L

We say that @ is isotropic (resp. anisotropic) over L if QL is
isotropic (resp. anisotropic).



esidue forms Applications

Section 2

Valued fields & quadratic forms: first
observations

© Valued fields & quadratic forms: first observations
@ Henselian valued fields
@ Quadratic forms over O, and their residues
@ Examples
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Henselian valued fields

Let K be a field. Consider a valuation v on K, i.e. a group

homomorphism
v:K* =T

where I is an ordered abelian group (written additively) and such
that v(x + y) > min{v(x), v(y)} for all x,y € K. (We take the
convention that v(0) = oo > «y for all v € I'). We call the pair
(K, v) a valued field.
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Henselian valued fields

Let K be a field. Consider a valuation v on K, i.e. a group
homomorphism
v:K* =T

where I is an ordered abelian group (written additively) and such
that v(x + y) > min{v(x), v(y)} for all x,y € K. (We take the
convention that v(0) = oo > «y for all v € I'). We call the pair
(K, v) a valued field.

e valuation ring O, = {x € K | v(x) > 0}

e valuation ideal m, = {x € K | v(x) > 0}

e residue field Kv = O, /m,

e value group vK = v(K*) (if vK = Z, then v is a Z-valuation)

For a € O,, we denote by 3" (or simply 3) its equivalence class in
O, /m,. Similarly, for f € O,[X1,. .., X,], denote by * (or f) the
corresponding element of Kv[Xi,..., Xy].
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Henselian valued fields

A valuation v on K is called henselian if one of the following
equivalent properties holds (see also [EP05, Theorem 4.1.3]):
@ For every finite field extension L/K, there is a unique
extension of v to L,
@ (Hensel's Lemma) For each f € O,[X] and a € O, with
f(a) = 0 # f’(a), there exists an a € O, with f(a) =0 and

o =

|
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Henselian valued fields

A valuation v on K is called henselian if one of the following
equivalent properties holds (see also [EP05, Theorem 4.1.3]):
@ For every finite field extension L/K, there is a unique
extension of v to L,
@ (Hensel's Lemma) For each f € O,[X] and a € O, with
f(a) = 0 # f’(a), there exists an a € O, with f(a) =0 and
a = a.

Examples:
e For a prime p, (Qp, vp) is a henselian Z-valued field with
Qpvp = Fp.
e For a field K, (K((t)), vt) is a henselian Z-valued field with
K(t)v: = K.
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Henselian valued fields

If (K, v) is a valued field, then one of two things happens:
e char(K) = char(Kv),
@ char(K) = 0 and char(Kv) # 0.

In either case, for a prime number p, we have char(Kv) = p if and
only if p € my, i.e. v(p) > 0.
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e char(K) = char(Kv),

@ char(K) = 0 and char(Kv) # 0.
In either case, for a prime number p, we have char(Kv) = p if and
only if p € my, i.e. v(p) > 0.
In the context of quadratic forms: we call a valued field (K, v)
dyadic if char(Kv) = 2 (equivalently, v(2) > 0), non-dyadic
otherwise.
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Henselian valued fields

If (K, v) is a valued field, then one of two things happens:

e char(K) = char(Kv),

@ char(K) = 0 and char(Kv) # 0.
In either case, for a prime number p, we have char(Kv) = p if and
only if p € my, i.e. v(p) > 0.
In the context of quadratic forms: we call a valued field (K, v)
dyadic if char(Kv) = 2 (equivalently, v(2) > 0), non-dyadic
otherwise.
E.g. Q2 and Fy((t)) are dyadic, Q3 and F3((t)) are non-dyadic.



Valued fields & quadratic forms: first observations
[e]e]e] ]

Henselian valued fields

Goal: Understand quadratic forms over valued fields (classify,
study properties).
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be derived from vK and Kv.
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Henselian valued fields

Goal: Understand quadratic forms over valued fields (classify,
study properties).

General philosophy on henselian valued fields: When K
carries a henselian valuation v, a lot of information about K can
be derived from vK and Kv.

Question: Given a henselian valued field (K, v), can we classify
the quadratic forms over K via the classification of quadratic forms
over Kv, and the value group vK?
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Henselian valued fields

Goal: Understand quadratic forms over valued fields (classify,
study properties).

General philosophy on henselian valued fields: When K
carries a henselian valuation v, a lot of information about K can
be derived from vK and Kv.

Question: Given a henselian valued field (K, v), can we classify
the quadratic forms over K via the classification of quadratic forms

over Kv, and the value group vK?

(Spoiler: Yes if v is non-dyadic. Otherwise, it's complicated.)
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Quadratic forms over @, and their residues

Let (K, v) be a valued field.

Definition 2.1 (Quadratic form over valuation ring)

A quadratic space over O, is a pair (V, Q) where V is a free
finite-dimensional O,-module and @ : V — O, is a map such that

o Vac K,ve V:Q(av) = a’Q(v), and

@ the map
bo: VXV = K:(xy)= Qlx+y)—Qx)— Qy)

is bilinear.
We call Q a quadratic form over O,,.
.
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Quadratic forms over @, and their residues

Let (K, v) be a valued field.

Definition 2.1 (Quadratic form over valuation ring)

A quadratic space over O, is a pair (V, Q) where V is a free
finite-dimensional O,-module and @ : V — O, is a map such that

o Vac K,ve V:Q(av) = a’Q(v), and

@ the map
bo: VXV = K:(xy)= Qlx+y)—Qx)— Qy)

is bilinear.

We call Q a quadratic form over O,,.

As before, after giving coordinates, quadratic forms over O,
correspond to homogeneous degree 2 polynomials over O,,.
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@ One can define isometry in the same way as over fields.
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Quadratic forms over @, and their residues

@ One can define isometry in the same way as over fields.
e To a quadratic space (V, Q) over O,, one can naturally
associate:
e a quadratic space (VK, @X) over K on the vector space
VK =V ®0, K, glven by extending scalars,
e a quadratlc space (V Q ) over Kv on the vector space
V= =V ®o, Kv=V/m,V, given by taking residues.
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Quadratic forms over @, and their residues

@ One can define isometry in the same way as over fields.

e To a quadratic space (V, Q) over O,, one can naturally
associate:

e a quadratic space (VK, @X) over K on the vector space
VK =V ®0, K, glven by extending scalars,

e a quadratlc space (V Q ) over Kv on the vector space
V= =V ®o, Kv=V/m,V, given by taking residues.

@ On the polynomial level, given a homogeneous degree 2
polynomial H € O,[Xi, ..., X;], extend scalars to K by simply
considering it as a polynomial over K, and take residues by
considering H' € Kv[Xi,...,X,].
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Quadratic forms over @, and their residues

@ One can define isometry in the same way as over fields.

e To a quadratic space (V, Q) over O,, one can naturally
associate:

e a quadratic space (VK, @X) over K on the vector space
VK =V ®0, K, glven by extending scalars,

e a quadratlc space (V Q ) over Kv on the vector space
V= =V ®o, Kv=V/m,V, given by taking residues.

@ On the polynomial level, given a homogeneous degree 2
polynomial H € O,[Xi, ..., X;], extend scalars to K by simply
considering it as a polynomial over K, and take residues by
considering H' € Kv[Xi,...,X,].

e Note: a quadratic form space (V, Q) is isotropic if and only if
(VK, QK) is isotropic.
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Quadratic forms over @, and their residues

Fix a valued field (K, v).

Proposition 2.2

Let (V, Q) be a quadratic space over O,.. Assume that Q" is
anisotropic. Then for x € V \ m,V one has v(Q(x)) =0. In
particular, Q is anisotropic and represents only elements of even
value.

Proof: Exercise.
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Quadratic forms over @, and their residues

Fix a valued field (K, v).

Proposition 2.2

Let (V, Q) be a quadratic space over O,.. Assume that 6‘/ is
anisotropic. Then for x € V \ m,V one has v(Q(x)) =0. In
particular, Q is anisotropic and represents only elements of even
value.

Proof: Exercise.

On the polynomial level, this says: if H € Ov[Xi,..., X, is such
that H' is anisotropic, then H is anisotropic, and in fact

v(H(a1,...,an)) = 2min{v(a1),...,v(an)}

for all a1,...,a, € K.
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Quadratic forms over @, and their residues

Let m € N. Suppose that 7r1,..., 7 € K* are such that
v(m1),...,v(mm) represent different classes in vK /2vK. Let

(Vi, Q1), .., (Vin, @m) be quadratic spaces over O, such that Q;
is anisotropic for each i. Then the quadratic space

(V> . x VE mQK L. L 7,QK)

over K is anisotropic.
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Quadratic forms over @, and their residues

Let m € N. Suppose that 7r1,..., 7 € K* are such that

v(m1), ..., v(mm) represent different classes in vK /2vK. Let

(Vi, Q1), .., (Vin, @m) be quadratic spaces over O, such that Q;
is anisotropic for each i. Then the quadratic space

(V> . x VE mQK L. L 7,QK)

over K is anisotropic.

Proof: Let (wi,...,wn) € (V< x ... x VK)\ {0}. Let
i€{1,...,m} be such that w; # 0.
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Quadratic forms over @, and their residues

Let m € N. Suppose that 7r1,..., 7 € K* are such that

v(m1), ..., v(mm) represent different classes in vK /2vK. Let

(Vi, Q1), .., (Vin, @m) be quadratic spaces over O, such that Q;
is anisotropic for each i. Then the quadratic space

(V> . x VE mQK L. L 7,QK)

over K is anisotropic.

Proof: Let (wi,...,wn) € (V< x ... x VK)\ {0}. Let
i€{1,...,m} be such that w; # 0. Then

v(miQK(w;)) € v(m;) + 2vK # v(m}) + 2vK for j # i. Hence, each
of the non-zero terms among 71 Qf (w1), ..., Tm QX (wy,) have a
different value.
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Quadratic forms over @, and their residues

Let m € N. Suppose that 7r1,..., 7 € K* are such that

v(m1), ..., v(mm) represent different classes in vK /2vK. Let

(Vi, Q1), .., (Vin, @m) be quadratic spaces over O, such that Q;
is anisotropic for each i. Then the quadratic space

(V> . x VE mQK L. L 7,QK)

over K is anisotropic.

Proof: Let (wi,...,wn) € (V< x ... x VK)\ {0}. Let
i€{1,...,m} be such that w; # 0. Then

v(miQK(w;)) € v(m;) + 2vK # v(m}) + 2vK for j # i. Hence, each
of the non-zero terms among 71 Qf (w1), ..., Tm QX (wy,) have a
different value. Thus m QK (w1) + ... + 7m QK (wm) # 0. Since
(wa,...,wnm) was chosen arbitrarily, this shows the anisotropy. [
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Quadratic forms over @, and their residues

To formulate a partial converse, we need the following definitions.

Definition 2.4

Let (V, Q) be a quadratic space over K. A nonsingular zero of Q
is a vector v € V such that Q(v) =0, but the map

bo(v,"): V= K:w— bg(v,w)

is not identically zero.
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Quadratic forms over @, and their residues

To formulate a partial converse, we need the following definitions.

Definition 2.4

Let (V, Q) be a quadratic space over K. A nonsingular zero of Q
is a vector v € V such that Q(v) = 0, but the map

bo(v,"): V= K:w— bg(v,w)

is not identically zero. We call (V, Q) regular if all of its non-trivial
zeroes are nonsingular.

Equivalently, a nonsingular zero of Q is a smooth point on the
projective variety defined by Q.
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Quadratic forms over @, and their residues

To formulate a partial converse, we need the following definitions.

Definition 2.4

Let (V, Q) be a quadratic space over K. A nonsingular zero of Q
is a vector v € V such that Q(v) = 0, but the map

bo(v,"): V= K:w— bg(v,w)

is not identically zero. We call (V, Q) regular if all of its non-trivial
zeroes are nonsingular.

4

Equivalently, a nonsingular zero of Q is a smooth point on the
projective variety defined by Q.

Proposition 2.5

Assume that (K, v) is henselian. Let (V, Q) be a quadratic space
over O,. If Q" has a nonsingular zero, then so does Q.
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Quadratic forms over @, and their residues

In summary, for a quadratic space (V/, Q) over a henselian
valuation ring O,:
e If Q is isotropic, then 6\/ is isotropic.
o If 6‘/ has a nonsingular zero, then @ has a nonsingular zero
(hence in particular is isotropic).

Note: If Q" is isotropic but has no nonsingular zeroes, then we
cannot conclude anything about Q.
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Consider over the field of 3-adic numbers Q3 the form

H(X1, X2, X3) = X2 +2X1 Xo + 4X2 + X2,
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Examples
Consider over the field of 3-adic numbers Q3 the form
H(X1, X2, X3) = X2 +2X1 Xo + 4X2 + X2,
Taking residues, we obtain over [F3 the form
H(X1, X2, X3) = X? 4+ 2X1 X0 4+ X5 4+ X5 = (X1 + Xo)> + X3.

It has a singular zero (1, —1,0), but no nonsingular zeroes. Hence,
we canot conclude right away.
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Examples
Consider over the field of 3-adic numbers Q3 the form
H(X1, X2, X3) = X2 +2X1 Xo + 4X2 + X2,
Taking residues, we obtain over [F3 the form
H(X1, X2, X3) = X? 4+ 2X1 X0 4+ X5 4+ X5 = (X1 + Xo)> + X3.

It has a singular zero (1, —1,0), but no nonsingular zeroes. Hence,
we canot conclude right away.
Let us do a variable transformation (= isometry).
H(X1 — Xa, X0, X3) = X{ + X3 +3 X3
S—— ~~

Q1(X1,X3) Q(X2)
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Examples
Consider over the field of 3-adic numbers Q3 the form
H(X1, X2, X3) = X2 +2X1 Xo + 4X2 + X2,
Taking residues, we obtain over [F3 the form
H(X1, X2, X3) = X? 4+ 2X1 X0 4+ X5 4+ X5 = (X1 + Xo)> + X3.

It has a singular zero (1, —1,0), but no nonsingular zeroes. Hence,
we canot conclude right away.
Let us do a variable transformation (= isometry).

H(X1 — Xa, X0, X3) = X? + X2 +3 X2
~—_—— ~~

Q1(X1,X3) Q(X2)

Since @ and Q; are anisotropic, and v3(3) = 1 € 2v3Q3, we
conclude that H is anisotropic.
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Examples

Consider over the field of 2-adic numbers Q, the form

H(X1, Xo, X3, X3) = X? 4+ X3 4+ X3 + X7.
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Examples

Consider over the field of 2-adic numbers Q, the form
H(X1, Xo, X3, X3) = X? 4+ X3 4+ X3 + X7.

Taking residues, we obtain over [F, the form

H(X1, Xo, X3, Xa) = X2 + X3 + X2+ X2 = (X1 + Xo + X3+ Xg)°.

It has a singular zero (1,1,1, 1), but no nonsingular zeroes. Hence,
we cannot conclude right away.
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X, X X X
H<; ;+&+&, + X3+ Xa, 22 +m>
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Examples

Let us do a variable transformation

X, X X1 X
H<1 1+X2+X3, + X3+ Xy, 25 +X4>

272
= X2+ X1 X0 + X3 42 (X3 + XXy + X2)
(02,@1) (02,Q,)

+2 (X1X3 + X1 Xq + Xo X3 + X3X4) .
(03703)
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Examples

Let us do a variable transformation

X1 X X1 X1
H<21 21+X2+X3, + X3+ Xa, 22 +X4>
= XZ 4 X1 Xo + X3 4+2(XZ + XaXq + X3)
(Ongl) (0\2/’02)
+ 2 (X1 X3 + X1 X + Xo X3 + X3X4) .

(03703)

We compute that 61‘/ and @V are anisotropic and that, for any
w1, wa € O2, one has 2v(Q3(wi, w2)) > v(Q1(wr)) + v(Qa(w2)).
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Examples

Let us do a variable transformation

X1 X X1 X1
H<21 21+X2+X3, + X3+ Xa, 22 +X4>
= XZ 4 X1 Xo + X3 4+2(XZ + XaXq + X3)
(02,Q) (02,®)
+ 2 (X1 X3 + X1 X + Xo X3 + X3X4) .

(03703)

We compute that 61‘/ and @V are anisotropic and that, for any
w1, wa € O2, one has 2v(Q3(wi, w2)) > v(Q1(wr)) + v(Qa(w2)).
It follows that H is anisotropic.
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Examples

Let us do a variable transformation

X, X X X
H<21 21+X2+X3, + X3+ Xa, 22 +X4>

= XZ 4 X1 Xo + X3 4+2(XZ + XaXq + X3)
(02,Q1) (03, Q)
+ 2 (X1 X3 + X1 X + Xo X3 + X3X4) .
(07,@3)

We compute that Q;' and Q," are anisotropic and that, for any

w1, wa € O2, one has 2v(Q3(wi, w2)) > v(Q1(wr)) + v(Qa(w2)).
It follows that H is anisotropic.

How to formulate these techniques in a general framework, which
does not depend on a choice of coordinates?
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Section 3

Residue forms

© Residue forms
@ The Schwarz Inequality and residue forms
@ Non-dyadic henselian valued fields
@ Subtleties in the dyadic case
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The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic
space over K. If there exist wy, wr, € V such that

2v(bo(wi, w2)) < v(Q(w1)) + v(Q(n2))

then @ has a nonsingular zero.
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The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic
space over K. If there exist wy, wr, € V such that

2v(bo(wi, w2)) < v(Q(w1)) + v(Q(n2))

then @ has a nonsingular zero.

Proof: After rescaling wy and wy, we may assume that
v(bo(wi,wr)) =0 < v(Q(w1)) < v(Q(wz)) and v(Q(wz)) > 0.
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The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic
space over K. If there exist wy, wr, € V such that

2v(bo(wi, w2)) < v(Q(w1)) + v(Q(n2))

then @ has a nonsingular zero.

Proof: After rescaling wy and wy, we may assume that

v(bo(wi,wr)) =0 < v(Q(w1)) < v(Q(wz)) and v(Q(wz)) > 0.
Now consider the polynomial

F(T) = Q(w2) + Tho(wi, wo) + T?Q(wy) € O,[T].

Since f(0) = Q(w2) = 0 but f/(0) = bo(wi, wn) # 0, f has a root
a € O, since (K, v) is henselian.
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The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic
space over K. If there exist wi, w, € V such that

2v(bg(w1, w2)) < v(Q(w1)) + v(Q(w2))

then Q has a nonsingular zero.

Proof continued: We compute that

Q(w2 + aw) = Q(w2) + abg(wi, ws) + a*Q(w1) = 0, and
bo(wa + awr,wy) = bo(we, w1) + aQ(wr) # 0
—_——— ——

€Oy emy

so wp + aw is a nonsingular zero of Q. O
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The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an
anisotropic quadratic space over V.
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The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an
anisotropic quadratic space over V. It follows from the Schwarz
Inequality that, for any v € vK, the sets

V, = {w e V| «(Qw)) = 7} and
Vi = {we V] v(Qw) > 7}

are O,-submodules of V, and VAY/VW+ naturally becomes a
Kv-vector space.
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The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an
anisotropic quadratic space over V. It follows from the Schwarz
Inequality that, for any v € vK, the sets

V, = {w e V| «(Qw)) = 7} and
Vi = {we V] v(Qw) > 7}

are O,-submodules of V, and VAY/VW+ naturally becomes a
Kv-vector space. Furthermore, after fixing m € K with v(7) =7,

the map
r7(Q) : Vo/ VI = Kv:w = - 1Q(w)

defines an anisotropic quadratic form on VW/V,;F.
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The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an
anisotropic quadratic space over V. It follows from the Schwarz
Inequality that, for any v € vK, the sets

V, = {w e V| «(Qw)) = 7} and
Vi = {we V] v(Qw) > 7}

are O,-submodules of V, and VAY/VW+ naturally becomes a
Kv-vector space. Furthermore, after fixing m € K with v(7) =7,
the map

r7(Q) : Vo/ VI = Kv:w = - 1Q(w)

defines an anisotropic quadratic form on VW/V,;F.

We call these forms r(Q) (for different choices of 7) residue
forms of Q (with respect to v).
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The Schwarz Inequality and residue forms

Example: consider as before over Q3 the form
H(X1, Xo, X3) = X? 4 2X1 X0 + 4X3 + X2,

seen as a quadratic form on Q3.



Residue forms
000@00

The Schwarz Inequality and residue forms
Example: consider as before over Q3 the form
H(X1, Xo, X3) = X? 4 2X1 X0 + 4X3 + X2,
seen as a quadratic form on Qg. We computed that

H(X17X27 X3) = (X]_ + X2)2 + X?::)
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The Schwarz Inequality and residue forms

Example: consider as before over Q3 the form
H(X1, Xo, X3) = X? 4 2X1 X0 + 4X3 + X2,
seen as a quadratic form on Q%. We computed that
H(X1, X2, X3) = (X1 + X2)? + X35.
From this, one can compute (exercise) that
Vo = O3,

Vi =V ={(a,b,c) €03 | a+b,cem},
Vo=Vih =m, Vo =m}

v
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The Schwarz Inequality and residue forms

Example: consider as before over Q3 the form
H(X1, X2, X3) = X? 42X Xo + 4X3 + X3,
seen as a quadratic form on Q%. We computed that
H(X1, X2, X3) = (X1 + X2)? + X35.
From this, one can compute (exercise) that
Vo = O3,
Vi =V ={(a,b,c) €03 | a+b,cem},

Vo=Vih =m, Vo =m?.

We see that Vo/ Vi = ((1,0,0),(0,0,1)) is 2-dimensional and
Vi/Vo = {((1,—1,0)) is 1-dimensional.
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The Schwarz Inequality and residue forms

Example: consider as before over Q3 the form
H(X1, Xo, X3) = X? + 2X1 Xo + 4X3 + X2,
seen as a quadratic form on Qg.
Vo = 03,
Vi =V ={(a,b,c) €O} | a+b,cem},
Vo= Vi =m, Vo =m].

We see that Vo/V4 = ((1,0,0),(0,0,1)) is 2-dimensional and
Vi/Va =((1,-1,0)) is 1-dimensional.
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The Schwarz Inequality and residue forms
Example: consider as before over Q3 the form
H(X1, Xo, X3) = X? + 2X1 Xo + 4X3 + X2,
seen as a quadratic form on Qg.
Vo = 03,
Vi =V ={(a,b,c) €O} | a+b,cem},
Vo= Vi =m, Vo =m].

We see that Vo/V4 = ((1,0,0),(0,0,1)) is 2-dimensional and
Vi/ Va2 ={((1,-1,0)) is 1-dimensional. We can now compute the
residue forms:

r1(H) = H(X.(1,0,0) + Xx(0,0, 1)) = X2 + X2
r3(H) 3_1H(X1(17_110)) :Xl2

I
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Some observations:
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Some observations:

@ Suppose 71, T, o are such that v(m) = v(m2) + 2v(«). Then
the map VV(m)/VvJEm) — vv(m)/vj(m) : W — aw defines an

isometry rr, (Q) = 7rf17r2a2rﬂ2(Q).
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Some observations:

@ Suppose 71, T, o are such that v(m) = v(m2) + 2v(«). Then
the map V,( /VV )~ Vi( )/V:Em) : W — aw defines an

isometry rr, (Q) = m; 17T2a21’7|-2(Q).
= Up to rescaling, one can associate residue forms of @ to
elements of vK /2vK.
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Some observations:

@ Suppose 71, T, o are such that v(m) = v(m2) + 2v(«). Then
the map V,( /VV )~ v, 2)/V\/JEW2) : W — aw defines an

isometry rr, (Q) = m; 17T2a21‘7|-2(Q).
= Up to rescaling, one can associate residue forms of @ to
elements of vK /2vK.

@ Let m € N. Suppose that 71,..., 7, € K* are such that
v(m1), ..., v(mm) represent different classes in vK/2vK. Let
(V17 Ql) , (Vin, @m) be quadratic spaces over O, such that
Q' is amsotropic for each /. Then the anisotropic quadratic
space

(V,Q)= (VK x...x VK mQK L ... L x,QK)

has residue forms 1, (Q) = Q;  for i =1,..., m, and
r-(Q) =0 for m € K* with v(7) & v(7;) + 2vK for all i.
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Non-dyadic henselian valued fields

Let (K, v) be a non-dyadic henselian valued field.

© Every regular quadratic space over K is isometric to a space
of the form (VX x ... x VK 1 QK L ... L 7,QK) where
T1,...,Tm € K are such that v(m1),...,v(7m) represent
different elements in vK /2vK, (V;, Q;) is a quadratic space
over Oy, and Q; is regular.
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Non-dyadic henselian valued fields

Let (K, v) be a non-dyadic henselian valued field.

© Every regular quadratic space over K is isometric to a space
of the form (VX x ... x VK 1 QK L ... L 7,QK) where
T1,...,Tm € K are such that v(m1),...,v(7m) represent
different elements in vK /2vK, (V;, Q;) is a quadratic space
over Oy, and Q; is regular.

@ Given anisotropic quadratic spaces (V1, Q1) and (Va, @2) over
K such that r,(Q1) = r;(Qz) for all m € K*, we have
Q1 = Q.
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Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let
(7 )yevk j2vk € KYK/2"K be such that v(r,) € 7.
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Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let
(7)yevk j2vk € KVK/2vK be such that v(r,) € 7.
e For an anisotropic quadratic space (V, Q), we have
2 evk j2vk dim(rz, (Q)) < dim(Q), but we might not have
equality.
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Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let
(7)yevk j2vk € KVK/2vK be such that v(r,) € 7.
e For an anisotropic quadratic space (V, Q), we have
2 evk j2vk dim(rz, (Q)) < dim(Q), but we might not have
equality.
o Even if we do have }°_ ¢ x o,k dim(rx, (Q)) = dim(Q), the
forms 1. (Q) do not in general uniquely determine the
quadratic space (V, Q) up to isometry.
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Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let
(7 )yevk j2vk € KYK/2"K be such that v(r,) € 7.

e For an anisotropic quadratic space (V, Q), we have
2 evk j2vk dim(rz, (Q)) < dim(Q), but we might not have
equality.

o Even if we do have }°_ ¢ x o,k dim(rx, (Q)) = dim(Q), the
forms 1. (Q) do not in general uniquely determine the
quadratic space (V, Q) up to isometry.

@ There could be an anisotropic quadratic space (V, Q) and a

valued field extension (K’,v’) such that Q is isotropic over
K’, but vK = V'K’ and Kv = K'V'.
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Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let
(7)yevk j2vk € KVK/2vK be such that v(r,) € 7.

e For an anisotropic quadratic space (V, Q), we have
2 evk j2vk dim(rz, (Q)) < dim(Q), but we might not have
equality.

o Even if we do have }°_ ¢ x o,k dim(rx, (Q)) = dim(Q), the
forms 1. (Q) do not in general uniquely determine the
quadratic space (V, Q) up to isometry.

@ There could be an anisotropic quadratic space (V, Q) and a
valued field extension (K’,v’) such that Q is isotropic over
K’, but vK = V'K’ and Kv = K'V'.

See the exercises for examples.
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Subtleties in the dyadic case

Theorem 3.3 (Mammone, Moresi, Wadsworth [MMW091])

Let (K, v) a henselian Z-valued field with uniformiser m, let Q be a
quadratic form over K. Then dim(Q) = dim(r1(Q)) + dim(r(Q))
as soon as one of the following holds:

e char(K) # 2,
o Q is non-degenerate (= regular over the algebraic closure K),
e char(K) =2 and [K : K?] = 2[Kv : Kv?].
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Subtleties in the dyadic case

Definition 3.4

Let K be a field. A quadratic space (V, Q) is called nonsingular if
the associated bilinear form b is nonsingular, i.e.

Yve K dwe K: Qv+ w)# Q(v) + Q(w).

Nonsingular quadratic spaces are always regular. Over fields of
characteristic different from two, the converse holds.
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Subtleties in the dyadic case

Definition 3.4

Let K be a field. A quadratic space (V, Q) is called nonsingular if
the associated bilinear form bg is nonsingular, i.e.

Yve K dwe K: Qv+ w)# Q(v) + Q(w).

Nonsingular quadratic spaces are always regular. Over fields of
characteristic different from two, the converse holds.
Examples:

° X12 + X1 X0 + X22 is nonsingular over Ty,
o XZ+ X1 Xz + X2 + X2 is regular but not nonsingular over Fy.



Residue forms
[efe]e] )

Theorem 3.5 (Tietze; Elomary, Tignol [Tie74; ET11])

Let (K, v) be a dyadic henselian valued field, Q an anisotropic
quadratic form over K. The following are equivalent:

@ Q is hyperbolic over some inert extension (L, w) of (K, v)
(i.e. (L,w)/(K,v) is separable algebraic and defectless,
Lw/Kv is separable, and vK = wlL),

@ all residue forms of Q are nonsingular,

© Q is isometric to an orthogonal sum of forms of the form
a1 X2 + XY + a3Y? with v(ap) < Watv(E)
When Q satisfies these equivalent conditions, then
dim(Q) = >_. cvkj2vk I, (Q), and if Q" is another anisotropic
quadratic form with r,(Q) 2 r(Q’) for all m € K*, then Q = Q.
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Applications

Residue forms
000000000000

Applications
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e Applications
@ Classification of quadratic forms
@ Quadratic forms under field extensions
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Classification of quadratic forms

Residue forms can be used to study the quadratic form theory of a
henselian valued field (K, v) via that of its residue field. See
exercises.
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Classification of quadratic forms

Residue forms can be used to study the quadratic form theory of a
henselian valued field (K, v) via that of its residue field. See
exercises.

Proposition 4.1

Let (K, v) be a henselian Z-valued field, n € N. Suppose that
every (n + 1)-dimensional quadratic form over Kv is isotropic.
Then every nondegenerate (2n + 1)-dimensional quadratic form
over K is isotropic.

Proof: Exercise.
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Classification of quadratic forms

Proposition 4.2

Let (K, v) be a non-dyadic henselian valued field, n € N. Suppose
that every (n + 1)-dimensional quadratic form over Kv is isotropic,
and there is a unique anisotropic n-dimensional quadratic form
over Kv up to isometry. Then every ([vK : 2vK]n + 1)-dimensional
quadratic form over K is isotropic, and there is a unique
anisotropic [vK : 2vK]n-dimensional quadratic form over K.

Proof: Exercise.
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Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L,w)/(K, v) a valued field
extension such that wL = vK. Let 71,...,mn € K* such that
v(m1),...,v(wm) represent different classes in vK /2vK. Assume
that (V, Q) is an anisotropic quadratic space over K with

dim(Q) =Y., 14,(Q). Then
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Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L,w)/(K, v) a valued field
extension such that wL = vK. Let 71,...,mn € K* such that
v(m1),...,v(wm) represent different classes in vK /2vK. Assume
that (V, Q) is an anisotropic quadratic space over K with
dim(Q) =Y., 14,(Q). Then
Q ifr..(Q) is anisotropic over Lw for all i, then QL is
anisotropic,
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Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L,w)/(K, v) a valued field
extension such that wL = vK. Let 71,...,mn € K* such that
v(m1),...,v(wm) represent different classes in vK /2vK. Assume
that (V, Q) is an anisotropic quadratic space over K with
dim(Q) =Y., 14,(Q). Then
Q ifr..(Q) is anisotropic over Lw for all i, then QL is
anisotropic,

@ ifr,,(Q) has a nonsingular zero over Lw for some i, then Q
has a nonsingular zero over Lw.
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Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L,w)/(K, v) a valued field
extension such that wL = vK. Let 71,...,mn € K* such that
v(m1),...,v(wm) represent different classes in vK /2vK. Assume
that (V, Q) is an anisotropic quadratic space over K with
dim(Q) =Y., 14,(Q). Then
Q ifr..(Q) is anisotropic over Lw for all i, then QL is
anisotropic,

@ ifr,,(Q) has a nonsingular zero over Lw for some i, then Q
has a nonsingular zero over Lw.

Proof sketch of (1): Let v; = v(m;). Let B; C V., be a linearly
independent set such that {X | x € B;} is a basis for V,,/ V" Let
W; = (Bj)o,. For x € WE\ {0} we have v(q(x)) € v; + 2wL.
Since (by comparing dimensions) Vt = Wl @ ... ® WL, and by
the Schwarz Inequality, we obtain that QLis anisotropic. O
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