Quadratic forms and valued fields

Nicolas Daans

University of Antwerp

August 21, 2023

Applications

What's in this talk?

Topic of this summer school: (hopefully not a surprise) Local-global principles for quadratic forms.

What's in this talk?

Topic of this summer school: (hopefully not a surprise) Local-global principles for quadratic forms. **Goal of this talk:** Discuss study of quadratic forms in the 'local' case. Quadratic forms (coordinate-freely)

Residue forms

Applications

What's in this talk?

Topic of this summer school: (hopefully not a surprise)Local-global principles for quadratic forms.Goal of this talk: Discuss study of quadratic forms in the 'local' case.

Talk structure:

- 1 Quadratic forms (coordinate-freely)
- 2 Valued fields & quadratic forms: first observations
- 3 Residue forms

Valued fields & guadratic forms: first observations

Applications

Section 1

Quadratic forms (coordinate-freely)

Quadratic forms (coordinate-freely)

Let K be a field.

Definition 1.1

A quadratic space over K is a pair (V, Q) where V is a finite-dimensional K-vector space, and Q is a map $V \to K$ such that

•
$$\forall a \in K, v \in V : Q(av) = a^2 Q(v)$$
, and

the map

$$\mathfrak{b}_Q:V imes V o K:(x,y)\mapsto Q(x+y)-Q(x)-Q(y)$$

is bilinear.

We call the map Q a *quadratic form over* K, and the map \mathfrak{b}_Q the *associated bilinear form*.

Let K be a field.

Definition 1.1

A quadratic space over K is a pair (V, Q) where V is a finite-dimensional K-vector space, and Q is a map $V \to K$ such that

•
$$\forall a \in K, v \in V : Q(av) = a^2 Q(v)$$
, and

the map

$$\mathfrak{b}_Q:V imes V o K:(x,y)\mapsto Q(x+y)-Q(x)-Q(y)$$

is bilinear.

We call the map Q a quadratic form over K, and the map \mathfrak{b}_Q the associated bilinear form.

The dimension of Q is by definition $\dim(V)$; we may write this as $\dim(Q)$ as well.

Note: Often, an *n*-dimensional quadratic form over K is defined to be a homogeneous degree 2 polynomial $H \in K[X_1, \ldots, X_n]$. For example:

- $H(X_1, X_2) = X_1 X_2$,
- $H(X_1, X_2, X_3) = X_1^2 + X_2^2 X_3^2$,
- $H(X_1, X_2, X_3, X_4) = (X_1 + X_2)^2 4(X_3 X_4)^2$.

Note: Often, an *n*-dimensional quadratic form over K is defined to be a homogeneous degree 2 polynomial $H \in K[X_1, \ldots, X_n]$. For example:

- $H(X_1, X_2) = X_1 X_2$,
- $H(X_1, X_2, X_3) = X_1^2 + X_2^2 X_3^2$,
- $H(X_1, X_2, X_3, X_4) = (X_1 + X_2)^2 4(X_3 X_4)^2.$

Our definition is simply a coordinate-free reformulation of this.

Valued fields & quadratic forms: first observations

esidue forms A

Applications

Quadratic forms

Proposition 1.2

Let (V, Q) be a quadratic space over K, let (b_1, \ldots, b_n) be a K-basis of V. There exists a homogeneous degree 2 polynomial $H \in K[X_1, \ldots, X_n]$ such that for all $a_1, \ldots, a_n \in K$ we have

$$Q(a_1b_1+\ldots+a_nb_n)=H(a_1,\ldots,a_n).$$

Valued fields & quadratic forms: first observations

esidue forms A

Applications

Quadratic forms

Proposition 1.2

Let (V, Q) be a quadratic space over K, let (b_1, \ldots, b_n) be a K-basis of V. There exists a homogeneous degree 2 polynomial $H \in K[X_1, \ldots, X_n]$ such that for all $a_1, \ldots, a_n \in K$ we have

$$Q(a_1b_1+\ldots+a_nb_n)=H(a_1,\ldots,a_n).$$

Conversely, given a homogeneous degree 2 polynomial $H \in K[X_1, \ldots, X_n]$, the map

$$K^n \to K: (a_1, \ldots, a_n) \mapsto H(a_1, \ldots, a_n)$$

is a quadratic form on K^n .

Proof: Exercise.

We call a quadratic space (V, Q) (or the quadratic form Q) isotropic if $\exists v \in V \setminus \{0\}$ with Q(v) = 0, anisotropic otherwise.

Applications

Quadratic forms

We call a quadratic space (V, Q) (or the quadratic form Q) isotropic if $\exists v \in V \setminus \{0\}$ with Q(v) = 0, anisotropic otherwise.

We call two quadratic spaces (V_1, Q_1) and (V_2, Q_2) isometric (denoted by $(V_1, Q_1) \cong (V_2, Q_2)$ or simply $Q_1 \cong Q_2$) if there exists an isomorphism of K-vector spaces $\iota : V_1 \to V_2$ such that $Q_2(\iota(v)) = Q_1(v)$ for all $v \in V_1$.

We call a quadratic space (V, Q) (or the quadratic form Q) isotropic if $\exists v \in V \setminus \{0\}$ with Q(v) = 0, anisotropic otherwise.

We call two quadratic spaces (V_1, Q_1) and (V_2, Q_2) isometric (denoted by $(V_1, Q_1) \cong (V_2, Q_2)$ or simply $Q_1 \cong Q_2$) if there exists an isomorphism of K-vector spaces $\iota : V_1 \to V_2$ such that $Q_2(\iota(v)) = Q_1(v)$ for all $v \in V_1$.

For quadratic spaces (V_1, Q_1) and (V_2, Q_2) , we define its orthogonal sum $(V_1, Q_1) \perp (V_2, Q_2)$ as the space $V_1 \times V_2$ with the form

$$Q_1 \perp Q_2 : V_1 \times V_2 \rightarrow K : (v_1, v_2) \mapsto Q(v_1) + Q(v_2).$$

If (V, Q) is a quadratic space over K and L/K a field extension, we denote by (V^L, Q^L) the extension of (V, Q) to L, i.e. $V^L = V \otimes_K L$ and Q^L is such that $Q^L(x \otimes a) = a^2 Q(x)$ for $x \in V$ and $a \in L$. We say that Q is *isotropic (resp. anisotropic) over* L if Q^L is isotropic (resp. anisotropic).

Valued fields & guadratic forms: first observations

Applications

Section 2

Valued fields & quadratic forms: first observations

2 Valued fields & quadratic forms: first observations

- Henselian valued fields
- Quadratic forms over \mathcal{O}_{ν} and their residues
- Examples

Let K be a field. Consider a valuation v on K, i.e. a group homomorphism

$$V: K^{\times} \to \Gamma$$

where Γ is an ordered abelian group (written additively) and such that $v(x + y) \ge \min\{v(x), v(y)\}$ for all $x, y \in K$. (We take the convention that $v(0) = \infty > \gamma$ for all $\gamma \in \Gamma$). We call the pair (K, v) a valued field.

Let K be a field. Consider a valuation v on K, i.e. a group homomorphism

$$V: K^{\times} \to \Gamma$$

where Γ is an ordered abelian group (written additively) and such that $v(x + y) \ge \min\{v(x), v(y)\}$ for all $x, y \in K$. (We take the convention that $v(0) = \infty > \gamma$ for all $\gamma \in \Gamma$). We call the pair (K, v) a valued field.

- valuation ring $\mathcal{O}_v = \{x \in K \mid v(x) \ge 0\}$
- valuation ideal $\mathfrak{m}_v = \{x \in K \mid v(x) > 0\}$
- residue field $Kv = \mathcal{O}_v/\mathfrak{m}_v$
- value group $vK = v(K^{\times})$ (if $vK = \mathbb{Z}$, then v is a \mathbb{Z} -valuation)

Let K be a field. Consider a valuation v on K, i.e. a group homomorphism

$$V: K^{\times} \to \Gamma$$

where Γ is an ordered abelian group (written additively) and such that $v(x + y) \ge \min\{v(x), v(y)\}$ for all $x, y \in K$. (We take the convention that $v(0) = \infty > \gamma$ for all $\gamma \in \Gamma$). We call the pair (K, v) a valued field.

- valuation ring $\mathcal{O}_v = \{x \in K \mid v(x) \ge 0\}$
- valuation ideal $\mathfrak{m}_v = \{x \in K \mid v(x) > 0\}$
- residue field $Kv = \mathcal{O}_v/\mathfrak{m}_v$

• value group $vK = v(K^{\times})$ (if $vK = \mathbb{Z}$, then v is a \mathbb{Z} -valuation)

For $a \in \mathcal{O}_{v}$, we denote by \overline{a}^{v} (or simply \overline{a}) its equivalence class in $\mathcal{O}_{v}/\mathfrak{m}_{v}$. Similarly, for $f \in \mathcal{O}_{v}[X_{1}, \ldots, X_{n}]$, denote by \overline{f}^{v} (or \overline{f}) the corresponding element of $Kv[X_{1}, \ldots, X_{n}]$.

A valuation v on K is called *henselian* if one of the following equivalent properties holds (see also [EP05, Theorem 4.1.3]):

- For every finite field extension L/K, there is a unique extension of v to L,
- (*Hensel's Lemma*) For each $f \in \mathcal{O}_{v}[X]$ and $a \in \mathcal{O}_{v}$ with $\overline{f(a)} = 0 \neq \overline{f'(a)}$, there exists an $\alpha \in \mathcal{O}_{v}$ with $f(\alpha) = 0$ and $\overline{\alpha} = \overline{a}$.

A valuation v on K is called *henselian* if one of the following equivalent properties holds (see also [EP05, Theorem 4.1.3]):

- For every finite field extension L/K, there is a unique extension of v to L,
- (Hensel's Lemma) For each $f \in \mathcal{O}_{v}[X]$ and $a \in \mathcal{O}_{v}$ with $\overline{f(a)} = 0 \neq \overline{f'(a)}$, there exists an $\alpha \in \mathcal{O}_{v}$ with $f(\alpha) = 0$ and $\overline{\alpha} = \overline{a}$.

Examples:

- For a prime p, (\mathbb{Q}_p, v_p) is a henselian \mathbb{Z} -valued field with $\mathbb{Q}_p v_p \cong \mathbb{F}_p$.
- For a field K, $(K((t)), v_t)$ is a henselian \mathbb{Z} -valued field with $K((t))v_t \cong K$.

If (K, v) is a valued field, then one of two things happens:

- $\operatorname{char}(K) = \operatorname{char}(Kv)$,
- $\operatorname{char}(K) = 0$ and $\operatorname{char}(Kv) \neq 0$.

In either case, for a prime number p, we have char(Kv) = p if and only if $p \in \mathfrak{m}_v$, i.e. v(p) > 0.

If (K, v) is a valued field, then one of two things happens:

- $\operatorname{char}(K) = \operatorname{char}(Kv)$,
- $\operatorname{char}(K) = 0$ and $\operatorname{char}(Kv) \neq 0$.

In either case, for a prime number p, we have char(Kv) = p if and only if $p \in \mathfrak{m}_v$, i.e. v(p) > 0.

In the context of quadratic forms: we call a valued field (K, v) dyadic if char(Kv) = 2 (equivalently, v(2) > 0), non-dyadic otherwise.

If (K, v) is a valued field, then one of two things happens:

- $\operatorname{char}(K) = \operatorname{char}(Kv)$,
- $\operatorname{char}(K) = 0$ and $\operatorname{char}(Kv) \neq 0$.

In either case, for a prime number p, we have char(Kv) = p if and only if $p \in \mathfrak{m}_v$, i.e. v(p) > 0.

In the context of quadratic forms: we call a valued field (K, v) dyadic if char(Kv) = 2 (equivalently, v(2) > 0), non-dyadic otherwise.

E.g. \mathbb{Q}_2 and $\mathbb{F}_2((t))$ are dyadic, \mathbb{Q}_3 and $\mathbb{F}_3((t))$ are non-dyadic.

Goal: Understand quadratic forms over valued fields (classify, study properties).

Goal: Understand quadratic forms over valued fields (classify, study properties).

General philosophy on henselian valued fields: When K carries a henselian valuation v, a lot of information about K can be derived from vK and Kv.

Goal: Understand quadratic forms over valued fields (classify, study properties).

General philosophy on henselian valued fields: When K carries a henselian valuation v, a lot of information about K can be derived from vK and Kv.

Question: Given a henselian valued field (K, v), can we classify the quadratic forms over K via the classification of quadratic forms over Kv, and the value group vK?

Goal: Understand quadratic forms over valued fields (classify, study properties).

General philosophy on henselian valued fields: When K carries a henselian valuation v, a lot of information about K can be derived from vK and Kv.

Question: Given a henselian valued field (K, v), can we classify the quadratic forms over K via the classification of quadratic forms over Kv, and the value group vK?

(**Spoiler:** Yes if *v* is non-dyadic. Otherwise, it's complicated.)

Let (K, v) be a valued field.

Definition 2.1 (Quadratic form over valuation ring)

A quadratic space over \mathcal{O}_{v} is a pair (V, Q) where V is a free finite-dimensional \mathcal{O}_{v} -module and $Q: V \to \mathcal{O}_{v}$ is a map such that

• $\forall a \in K, v \in V : Q(av) = a^2 Q(v)$, and

the map

$$\mathfrak{b}_Q:V imes V o K:(x,y)\mapsto Q(x+y)-Q(x)-Q(y)$$

is bilinear.

We call Q a quadratic form over \mathcal{O}_v .

Let (K, v) be a valued field.

Definition 2.1 (Quadratic form over valuation ring)

A quadratic space over \mathcal{O}_{v} is a pair (V, Q) where V is a free finite-dimensional \mathcal{O}_{v} -module and $Q: V \to \mathcal{O}_{v}$ is a map such that

- $\forall a \in K, v \in V : Q(av) = a^2 Q(v)$, and
- the map

$$\mathfrak{b}_Q:V imes V o \mathcal{K}:(x,y)\mapsto \mathcal{Q}(x+y)-\mathcal{Q}(x)-\mathcal{Q}(y)$$

is bilinear.

We call Q a quadratic form over \mathcal{O}_v .

As before, after giving coordinates, quadratic forms over \mathcal{O}_v correspond to homogeneous degree 2 polynomials over \mathcal{O}_v .

• One can define isometry in the same way as over fields.

- One can define isometry in the same way as over fields.
- To a quadratic space (V, Q) over \mathcal{O}_v , one can naturally associate:

- One can define isometry in the same way as over fields.
- To a quadratic space (V, Q) over \mathcal{O}_v , one can naturally associate:
 - a quadratic space (V^K, Q^K) over K on the vector space $V^K = V \otimes_{\mathcal{O}_v} K$, given by extending scalars,

- One can define isometry in the same way as over fields.
- To a quadratic space (V, Q) over \mathcal{O}_{v} , one can naturally associate:
 - a quadratic space (V^K, Q^K) over K on the vector space $V^K = V \otimes_{\mathcal{O}_v} K$, given by extending scalars,
 - a quadratic space $(\overline{V}^{\nu}, \overline{Q}^{\nu})$ over $K\nu$ on the vector space $\overline{V}^{\nu} = V \otimes_{\mathcal{O}_{\nu}} K\nu = V/\mathfrak{m}_{\nu} V$, given by taking residues.

- One can define isometry in the same way as over fields.
- To a quadratic space (V, Q) over \mathcal{O}_v , one can naturally associate:
 - a quadratic space (V^K, Q^K) over K on the vector space $V^K = V \otimes_{\mathcal{O}_v} K$, given by extending scalars,
 - a quadratic space $(\overline{V}^{\nu}, \overline{Q}^{\nu})$ over $K\nu$ on the vector space $\overline{V}^{\nu} = V \otimes_{\mathcal{O}_{\nu}} K\nu = V/\mathfrak{m}_{\nu} V$, given by taking residues.
- On the polynomial level, given a homogeneous degree 2 polynomial *H* ∈ *O_v*[*X*₁,..., *X_n*], extend scalars to *K* by simply considering it as a polynomial over *K*, and take residues by considering *H^v* ∈ *Kv*[*X*₁,..., *X_n*].

- One can define isometry in the same way as over fields.
- To a quadratic space (V, Q) over \mathcal{O}_v , one can naturally associate:
 - a quadratic space (V^K, Q^K) over K on the vector space $V^K = V \otimes_{\mathcal{O}_v} K$, given by extending scalars,
 - a quadratic space $(\overline{V}^{\nu}, \overline{Q}^{\nu})$ over $K\nu$ on the vector space $\overline{V}^{\nu} = V \otimes_{\mathcal{O}_{\nu}} K\nu = V/\mathfrak{m}_{\nu} V$, given by taking residues.
- On the polynomial level, given a homogeneous degree 2 polynomial *H* ∈ *O_v*[*X*₁,..., *X_n*], extend scalars to *K* by simply considering it as a polynomial over *K*, and take residues by considering *H^v* ∈ *Kv*[*X*₁,..., *X_n*].
- Note: a quadratic form space (V, Q) is isotropic if and only if (V^K, Q^K) is isotropic.
Fix a valued field (K, v).

Proposition 2.2

Let (V, Q) be a quadratic space over \mathcal{O}_v . Assume that \overline{Q}^V is anisotropic. Then for $x \in V \setminus \mathfrak{m}_v V$ one has v(Q(x)) = 0. In particular, Q is anisotropic and represents only elements of even value.

Proof: Exercise.

Fix a valued field (K, v).

Proposition 2.2

Let (V, Q) be a quadratic space over \mathcal{O}_v . Assume that \overline{Q}^V is anisotropic. Then for $x \in V \setminus \mathfrak{m}_v V$ one has v(Q(x)) = 0. In particular, Q is anisotropic and represents only elements of even value.

Proof: Exercise.

On the polynomial level, this says: if $H \in \mathcal{O}_v[X_1, \ldots, X_n]$ is such that \overline{H}^v is anisotropic, then H is anisotropic, and in fact

$$v(H(a_1,\ldots,a_n))=2\min\{v(a_1),\ldots,v(a_n)\}$$

for all $a_1, \ldots, a_n \in K$.

Quadratic forms over \mathcal{O}_{v} and their residues

Corollary 2.3

Let $m \in \mathbb{N}$. Suppose that $\pi_1, \ldots, \pi_m \in K^{\times}$ are such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Let $(V_1, Q_1), \ldots, (V_m, Q_m)$ be quadratic spaces over \mathcal{O}_v such that $\overline{Q_i}^v$ is anisotropic for each *i*. Then the quadratic space

$$(V_1^K \times \ldots \times V_m^K, \ \pi_1 Q_1^K \perp \ldots \perp \pi_m Q_m^K)$$

over K is anisotropic.

Corollary 2.3

Let $m \in \mathbb{N}$. Suppose that $\pi_1, \ldots, \pi_m \in K^{\times}$ are such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Let $(V_1, Q_1), \ldots, (V_m, Q_m)$ be quadratic spaces over \mathcal{O}_v such that $\overline{Q_i}^v$ is anisotropic for each *i*. Then the quadratic space

$$(V_1^K \times \ldots \times V_m^K, \ \pi_1 Q_1^K \perp \ldots \perp \pi_m Q_m^K)$$

over K is anisotropic.

<u>Proof:</u> Let $(w_1, \ldots, w_m) \in (V_1^K \times \ldots \times V_m^K) \setminus \{0\}$. Let $i \in \{1, \ldots, m\}$ be such that $w_i \neq 0$.

Quadratic forms over \mathcal{O}_{v} and their residues

Corollary 2.3

Let $m \in \mathbb{N}$. Suppose that $\pi_1, \ldots, \pi_m \in K^{\times}$ are such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Let $(V_1, Q_1), \ldots, (V_m, Q_m)$ be quadratic spaces over \mathcal{O}_v such that $\overline{Q_i}^v$ is anisotropic for each *i*. Then the quadratic space

$$(V_1^K \times \ldots \times V_m^K, \ \pi_1 Q_1^K \perp \ldots \perp \pi_m Q_m^K)$$

over K is anisotropic.

<u>Proof:</u> Let $(w_1, \ldots, w_m) \in (V_1^K \times \ldots \times V_m^K) \setminus \{0\}$. Let $i \in \{1, \ldots, m\}$ be such that $w_i \neq 0$. Then $v(\pi_i Q_i^K(w_i)) \in v(\pi_i) + 2vK \neq v(\pi_j) + 2vK$ for $j \neq i$. Hence, each of the non-zero terms among $\pi_1 Q_1^K(w_1), \ldots, \pi_m Q_m^K(w_m)$ have a different value.

Corollary 2.3

Let $m \in \mathbb{N}$. Suppose that $\pi_1, \ldots, \pi_m \in K^{\times}$ are such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Let $(V_1, Q_1), \ldots, (V_m, Q_m)$ be quadratic spaces over \mathcal{O}_v such that $\overline{Q_i}^v$ is anisotropic for each *i*. Then the quadratic space

$$(V_1^K \times \ldots \times V_m^K, \ \pi_1 Q_1^K \perp \ldots \perp \pi_m Q_m^K)$$

over K is anisotropic.

<u>Proof:</u> Let $(w_1, \ldots, w_m) \in (V_1^K \times \ldots \times V_m^K) \setminus \{0\}$. Let $i \in \{1, \ldots, m\}$ be such that $w_i \neq 0$. Then $v(\pi_i Q_i^K(w_i)) \in v(\pi_i) + 2vK \neq v(\pi_j) + 2vK$ for $j \neq i$. Hence, each of the non-zero terms among $\pi_1 Q_1^K(w_1), \ldots, \pi_m Q_m^K(w_m)$ have a different value. Thus $\pi_1 Q_1^K(w_1) + \ldots + \pi_m Q_m^K(w_m) \neq 0$. Since (w_1, \ldots, w_m) was chosen arbitrarily, this shows the anisotropy. \Box

To formulate a partial converse, we need the following definitions.

Definition 2.4

Let (V, Q) be a quadratic space over K. A nonsingular zero of Q is a vector $v \in V$ such that Q(v) = 0, but the map

$$\mathfrak{b}_Q(v,\cdot):V o K:w\mapsto\mathfrak{b}_Q(v,w)$$

is not identically zero.

To formulate a partial converse, we need the following definitions.

Definition 2.4

Let (V, Q) be a quadratic space over K. A nonsingular zero of Q is a vector $v \in V$ such that Q(v) = 0, but the map

$$\mathfrak{b}_Q(v,\cdot):V o K:w\mapsto\mathfrak{b}_Q(v,w)$$

is not identically zero. We call (V, Q) regular if all of its non-trivial zeroes are nonsingular.

Equivalently, a nonsingular zero of Q is a smooth point on the projective variety defined by Q.

To formulate a partial converse, we need the following definitions.

Definition 2.4

Let (V, Q) be a quadratic space over K. A nonsingular zero of Q is a vector $v \in V$ such that Q(v) = 0, but the map

$$\mathfrak{b}_Q(v,\cdot):V o K:w\mapsto\mathfrak{b}_Q(v,w)$$

is not identically zero. We call (V, Q) regular if all of its non-trivial zeroes are nonsingular.

Equivalently, a nonsingular zero of Q is a smooth point on the projective variety defined by Q.

Proposition 2.5

Assume that (K, v) is henselian. Let (V, Q) be a quadratic space over \mathcal{O}_v . If \overline{Q}^v has a nonsingular zero, then so does Q.

In summary, for a quadratic space (V, Q) over a henselian valuation ring \mathcal{O}_{v} :

- If Q is isotropic, then \overline{Q}^{ν} is isotropic.
- If \overline{Q}^{ν} has a nonsingular zero, then Q has a nonsingular zero (hence in particular is isotropic).

Note: If \overline{Q}^{ν} is isotropic but has no nonsingular zeroes, then we cannot conclude anything about Q.

Valued fields & quadratic forms: first observations

Residue forms

Applications

Examples

Consider over the field of 3-adic numbers \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2.$$

Consider over the field of 3-adic numbers \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2.$$

Taking residues, we obtain over \mathbb{F}_3 the form

$$\overline{H}(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + X_2^2 + X_3^2 = (X_1 + X_2)^2 + X_3^2.$$

It has a singular zero (1, -1, 0), but no nonsingular zeroes. Hence, we canot conclude right away.

Consider over the field of 3-adic numbers \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2.$$

Taking residues, we obtain over \mathbb{F}_3 the form

$$\overline{H}(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + X_2^2 + X_3^2 = (X_1 + X_2)^2 + X_3^2.$$

It has a singular zero (1, -1, 0), but no nonsingular zeroes. Hence, we canot conclude right away.

Let us do a variable transformation (= isometry).

$$H(X_1 - X_2, X_2, X_3) = \underbrace{X_1^2 + X_3^2}_{Q_1(X_1, X_3)} + 3 \underbrace{X_2^2}_{Q_2(X_2)}$$

Consider over the field of 3-adic numbers \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2.$$

Taking residues, we obtain over \mathbb{F}_3 the form

$$\overline{H}(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + X_2^2 + X_3^2 = (X_1 + X_2)^2 + X_3^2.$$

It has a singular zero (1, -1, 0), but no nonsingular zeroes. Hence, we canot conclude right away.

Let us do a variable transformation (= isometry).

$$H(X_1 - X_2, X_2, X_3) = \underbrace{X_1^2 + X_3^2}_{Q_1(X_1, X_3)} + 3 \underbrace{X_2^2}_{Q_2(X_2)}$$

Since $\overline{Q_1}$ and $\overline{Q_2}$ are anisotropic, and $v_3(3) = 1 \notin 2v_3 \mathbb{Q}_3$, we conclude that H is anisotropic.

Consider over the field of 2-adic numbers \mathbb{Q}_2 the form

$$H(X_1, X_2, X_3, X_4) = X_1^2 + X_2^2 + X_3^2 + X_4^2.$$

Consider over the field of 2-adic numbers \mathbb{Q}_2 the form

$$H(X_1, X_2, X_3, X_4) = X_1^2 + X_2^2 + X_3^2 + X_4^2.$$

Taking residues, we obtain over \mathbb{F}_2 the form

$$\overline{H}(X_1, X_2, X_3, X_4) = X_1^2 + X_2^2 + X_3^2 + X_4^2 = (X_1 + X_2 + X_3 + X_4)^2.$$

It has a singular zero (1, 1, 1, 1), but no nonsingular zeroes. Hence, we cannot conclude right away.

Residue forms

Applications

Examples

Let us do a variable transformation

$$H\left(\frac{X_1}{2}, \frac{X_1}{2} + X_2 + X_3, \frac{X_1}{2} + X_3 + X_4, \frac{X_1}{2} + X_4\right)$$

Examples

Let us do a variable transformation

$$H\left(\frac{X_{1}}{2}, \frac{X_{1}}{2} + X_{2} + X_{3}, \frac{X_{1}}{2} + X_{3} + X_{4}, \frac{X_{1}}{2} + X_{4}\right)$$

$$= \underbrace{X_{1}^{2} + X_{1}X_{2} + X_{2}^{2}}_{(\mathcal{O}_{\nu}^{2}, Q_{1})} + 2\underbrace{(X_{3}^{2} + X_{3}X_{4} + X_{4}^{2})}_{(\mathcal{O}_{\nu}^{2}, Q_{2})} + 2\underbrace{(X_{1}X_{3} + X_{1}X_{4} + X_{2}X_{3} + X_{3}X_{4})}_{(\mathcal{O}_{\nu}^{4}, Q_{3})}.$$

Examples

Let us do a variable transformation

$$H\left(\frac{X_{1}}{2}, \frac{X_{1}}{2} + X_{2} + X_{3}, \frac{X_{1}}{2} + X_{3} + X_{4}, \frac{X_{1}}{2} + X_{4}\right)$$

$$= \underbrace{X_{1}^{2} + X_{1}X_{2} + X_{2}^{2}}_{(\mathcal{O}_{v}^{2}, Q_{1})} + 2\underbrace{(X_{3}^{2} + X_{3}X_{4} + X_{4}^{2})}_{(\mathcal{O}_{v}^{2}, Q_{2})}$$

$$+ 2\underbrace{(X_{1}X_{3} + X_{1}X_{4} + X_{2}X_{3} + X_{3}X_{4})}_{(\mathcal{O}_{v}^{4}, Q_{3})}.$$

We compute that $\overline{Q_1}^{\nu}$ and $\overline{Q_2}^{\nu}$ are anisotropic and that, for any $w_1, w_2 \in \mathcal{O}_{\nu}^2$, one has $2\nu(Q_3(w_1, w_2)) \ge \nu(Q_1(w_1)) + \nu(Q_2(w_2))$.

Examples

Let us do a variable transformation

$$H\left(\frac{X_{1}}{2}, \frac{X_{1}}{2} + X_{2} + X_{3}, \frac{X_{1}}{2} + X_{3} + X_{4}, \frac{X_{1}}{2} + X_{4}\right)$$

$$= \underbrace{X_{1}^{2} + X_{1}X_{2} + X_{2}^{2}}_{(\mathcal{O}_{v}^{2}, Q_{1})} + 2\underbrace{(X_{1}^{2} + X_{1}X_{4} + X_{2}X_{3} + X_{3}X_{4})}_{(\mathcal{O}_{v}^{2}, Q_{2})}.$$

We compute that $\overline{Q_1}^v$ and $\overline{Q_2}^v$ are anisotropic and that, for any $w_1, w_2 \in \mathcal{O}_v^2$, one has $2v(Q_3(w_1, w_2)) \ge v(Q_1(w_1)) + v(Q_2(w_2))$. It follows that H is anisotropic.

Let us do a variable transformation

$$H\left(\frac{X_{1}}{2}, \frac{X_{1}}{2} + X_{2} + X_{3}, \frac{X_{1}}{2} + X_{3} + X_{4}, \frac{X_{1}}{2} + X_{4}\right)$$

$$= \underbrace{X_{1}^{2} + X_{1}X_{2} + X_{2}^{2}}_{(\mathcal{O}_{v}^{2}, Q_{1})} + 2\underbrace{(X_{1}^{2} + X_{1}X_{4} + X_{2}X_{3} + X_{3}X_{4})}_{(\mathcal{O}_{v}^{2}, Q_{2})}.$$

We compute that $\overline{Q_1}^v$ and $\overline{Q_2}^v$ are anisotropic and that, for any $w_1, w_2 \in \mathcal{O}_v^2$, one has $2v(Q_3(w_1, w_2)) \ge v(Q_1(w_1)) + v(Q_2(w_2))$. It follows that H is anisotropic.

How to formulate these techniques in a general framework, which does not depend on a choice of coordinates?

Valued fields & quadratic forms: first observations

Residue forms

Applications

Section 3

Residue forms

2 Valued fields & quadratic forms: first observations

3 Residue forms

- The Schwarz Inequality and residue forms
- Non-dyadic henselian valued fields
- Subtleties in the dyadic case

The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic space over K. If there exist $w_1, w_2 \in V$ such that

$$2v(\mathfrak{b}_Q(w_1, w_2)) < v(Q(w_1)) + v(Q(w_2))$$

then Q has a nonsingular zero.

The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic space over K. If there exist $w_1, w_2 \in V$ such that

$$2v(\mathfrak{b}_Q(w_1, w_2)) < v(Q(w_1)) + v(Q(w_2))$$

then Q has a nonsingular zero.

<u>Proof:</u> After rescaling w_1 and w_2 , we may assume that $v(\mathfrak{b}_Q(w_1, w_2)) = 0 \le v(Q(w_1)) \le v(Q(w_2))$ and $v(Q(w_2)) > 0$.

The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic space over K. If there exist $w_1, w_2 \in V$ such that

$$2v(\mathfrak{b}_Q(w_1,w_2)) < v(Q(w_1)) + v(Q(w_2))$$

then Q has a nonsingular zero.

<u>Proof:</u> After rescaling w_1 and w_2 , we may assume that $v(\mathfrak{b}_Q(w_1, w_2)) = 0 \le v(Q(w_1)) \le v(Q(w_2))$ and $v(Q(w_2)) > 0$. Now consider the polynomial

$$f(T) = Q(w_2) + T\mathfrak{b}_Q(w_1, w_2) + T^2 Q(w_1) \in \mathcal{O}_v[T].$$

Since $\overline{f(0)} = \overline{Q(w_2)} = 0$ but $\overline{f'(0)} = \overline{\mathfrak{b}_Q(w_1, w_2)} \neq 0$, f has a root $\alpha \in \mathcal{O}_v$ since (K, v) is henselian.

The Schwarz Inequality and residue forms

Proposition 3.1 (Schwarz Inequality)

Let (K, v) be a henselian valued field. Let (V, Q) be a quadratic space over K. If there exist $w_1, w_2 \in V$ such that

$$2v(\mathfrak{b}_Q(w_1, w_2)) < v(Q(w_1)) + v(Q(w_2))$$

then Q has a nonsingular zero.

Proof continued: We compute that

$$Q(w_2 + \alpha w_1) = Q(w_2) + \alpha \mathfrak{b}_Q(w_1, w_2) + \alpha^2 Q(w_1) = 0, \text{ and}$$
$$\mathfrak{b}_Q(w_2 + \alpha w_1, w_1) = \underbrace{\mathfrak{b}_Q(w_2, w_1)}_{\in \mathcal{O}_v^{\times}} + \underbrace{\alpha Q(w_2)}_{\in \mathfrak{m}_v} \neq 0$$

so $w_2 + \alpha w_1$ is a nonsingular zero of Q.

The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an *anisotropic* quadratic space over V.

The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an anisotropic quadratic space over V. It follows from the Schwarz Inequality that, for any $\gamma \in vK$, the sets

$$egin{aligned} V_\gamma &= \{w \in V \mid v(Q(w)) \geq \gamma\} ext{ and } V_\gamma^+ &= \{w \in V \mid v(Q(w)) > \gamma\} \end{aligned}$$

are $\mathcal{O}_v\text{-submodules}$ of V, and V_γ/V_γ^+ naturally becomes a Kv-vector space.

The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an *anisotropic* quadratic space over V. It follows from the Schwarz Inequality that, for any $\gamma \in vK$, the sets

$$egin{aligned} V_\gamma &= \{w \in V \mid v(Q(w)) \geq \gamma\} ext{ and } V_\gamma^+ &= \{w \in V \mid v(Q(w)) > \gamma\} \end{aligned}$$

are \mathcal{O}_{v} -submodules of V, and $V_{\gamma}/V_{\gamma}^{+}$ naturally becomes a Kv-vector space. Furthermore, after fixing $\pi \in K$ with $v(\pi) = \gamma$, the map

$$\mathrm{r}_{\pi}(\mathcal{Q}): V_{\gamma}/V_{\gamma}^+
ightarrow \mathcal{K} v: \overline{w} \mapsto \overline{\pi^{-1}\mathcal{Q}(w)}$$

defines an anisotropic quadratic form on V_{γ}/V_{γ}^+ .

The Schwarz Inequality and residue forms

Now let (K, v) be a henselian valued field and (V, Q) an *anisotropic* quadratic space over V. It follows from the Schwarz Inequality that, for any $\gamma \in vK$, the sets

$$egin{aligned} V_\gamma &= \{w \in V \mid v(\mathcal{Q}(w)) \geq \gamma\} ext{ and } V_\gamma^+ &= \{w \in V \mid v(\mathcal{Q}(w)) > \gamma\} \end{aligned}$$

are \mathcal{O}_{v} -submodules of V, and $V_{\gamma}/V_{\gamma}^{+}$ naturally becomes a Kv-vector space. Furthermore, after fixing $\pi \in K$ with $v(\pi) = \gamma$, the map

$$\mathrm{r}_{\pi}(\mathcal{Q}): V_{\gamma}/V_{\gamma}^+
ightarrow \mathcal{K} v: \overline{w} \mapsto \overline{\pi^{-1}\mathcal{Q}(w)}$$

defines an anisotropic quadratic form on V_{γ}/V_{γ}^+ .

We call these forms $r_{\pi}(Q)$ (for different choices of π) residue forms of Q (with respect to v).

The Schwarz Inequality and residue forms

Example: consider as before over \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2,$$

seen as a quadratic form on \mathbb{Q}_3^3 .

The Schwarz Inequality and residue forms

Example: consider as before over \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2,$$

seen as a quadratic form on \mathbb{Q}_3^3 . We computed that

$$\overline{H}(X_1, X_2, X_3) = (X_1 + X_2)^2 + X_3^3$$

The Schwarz Inequality and residue forms

Example: consider as before over \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2,$$

seen as a quadratic form on \mathbb{Q}_3^3 . We computed that

$$\overline{H}(X_1, X_2, X_3) = (X_1 + X_2)^2 + X_3^3$$

From this, one can compute (exercise) that

$$egin{aligned} &V_0 = \mathcal{O}_{v}^3, \ &V_1 = V_0^+ = \{(a,b,c) \in \mathcal{O}_{v}^3 \mid a+b,c \in \mathfrak{m}_{v}\}, \ &V_2 = V_1^+ = \mathfrak{m}_{v} V_0 = \mathfrak{m}_{v}^3. \end{aligned}$$

The Schwarz Inequality and residue forms

Example: consider as before over \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2,$$

seen as a quadratic form on \mathbb{Q}_3^3 . We computed that

$$\overline{H}(X_1, X_2, X_3) = (X_1 + X_2)^2 + X_3^3$$

From this, one can compute (exercise) that

$$egin{aligned} &V_0 = \mathcal{O}_{v}^3, \ &V_1 = V_0^+ = \{(a,b,c) \in \mathcal{O}_{v}^3 \mid a+b,c \in \mathfrak{m}_{v}\}, \ &V_2 = V_1^+ = \mathfrak{m}_{v} V_0 = \mathfrak{m}_{v}^3. \end{aligned}$$

We see that $V_0/V_1 = \langle (1,0,0), (0,0,1) \rangle$ is 2-dimensional and $V_1/V_2 = \langle (1,-1,0) \rangle$ is 1-dimensional.

The Schwarz Inequality and residue forms

Example: consider as before over \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2,$$

seen as a quadratic form on \mathbb{Q}_3^3 .

$$egin{aligned} &V_0 = \mathcal{O}_{v}^3, \ &V_1 = V_0^+ = \{(a,b,c) \in \mathcal{O}_{v}^3 \mid a+b,c \in \mathfrak{m}_{v}\}, \ &V_2 = V_1^+ = \mathfrak{m}_{v} V_0 = \mathfrak{m}_{v}^3. \end{aligned}$$

We see that $V_0/V_1 = \langle (1,0,0), (0,0,1) \rangle$ is 2-dimensional and $V_1/V_2 = \langle (1,-1,0) \rangle$ is 1-dimensional.

The Schwarz Inequality and residue forms

Example: consider as before over \mathbb{Q}_3 the form

$$H(X_1, X_2, X_3) = X_1^2 + 2X_1X_2 + 4X_2^2 + X_3^2,$$

seen as a quadratic form on \mathbb{Q}_3^3 .

$$egin{aligned} &V_0 = \mathcal{O}_{v}^3, \ &V_1 = V_0^+ = \{(a,b,c) \in \mathcal{O}_{v}^3 \mid a+b,c \in \mathfrak{m}_{v}\}, \ &V_2 = V_1^+ = \mathfrak{m}_{v} V_0 = \mathfrak{m}_{v}^3. \end{aligned}$$

We see that $V_0/V_1 = \langle (1,0,0), (0,0,1) \rangle$ is 2-dimensional and $V_1/V_2 = \langle (1,-1,0) \rangle$ is 1-dimensional. We can now compute the residue forms:

$$r_1(H) \cong \overline{H(X_1(1,0,0) + X_2(0,0,1))} = X_1^2 + X_2^2$$

$$r_3(H) \cong \overline{3^{-1}H(X_1(1,-1,0))} = X_1^2$$
Valued fields & quadratic forms: first observations $_{\rm OOOOOOOOOOOO}$

Residue forms

Applications

Some observations:

Residue forms Applications

Some observations:

• Suppose π_1, π_2, α are such that $v(\pi_1) = v(\pi_2) + 2v(\alpha)$. Then the map $V_{v(\pi_1)}/V^+_{v(\pi_1)} \rightarrow V_{v(\pi_2)}/V^+_{v(\pi_2)}$: $\overline{w} \mapsto \overline{\alpha w}$ defines an isometry $r_{\pi_1}(Q) \cong \overline{\pi_1^{-1} \pi_2 \alpha^2} r_{\pi_2}(Q)$.

Residue forms Applications

Some observations:

Suppose π₁, π₂, α are such that v(π₁) = v(π₂) + 2v(α). Then the map V_{v(π1)}/V⁺_{v(π1} → V_{v(π2)}/V⁺_{v(π2)} : w → αw defines an isometry r_{π1}(Q) ≅ π₁⁻¹π₂α²r_{π2}(Q).
 ⇒ Up to rescaling, one can associate residue forms of Q to elements of vK/2vK.

Residue forms Ap

Some observations:

- Suppose π₁, π₂, α are such that v(π₁) = v(π₂) + 2v(α). Then the map V_{v(π1)}/V⁺_{v(π1} → V_{v(π2)}/V⁺_{v(π2)} : w̄ → αw̄ defines an isometry r_{π1}(Q) ≅ π₁⁻¹π₂α²r_{π2}(Q).
 ⇒ Up to rescaling, one can associate residue forms of Q to elements of vK/2vK.
- ② Let $m \in \mathbb{N}$. Suppose that $\pi_1, \ldots, \pi_m \in K^{\times}$ are such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Let $(V_1, Q_1), \ldots, (V_m, Q_m)$ be quadratic spaces over \mathcal{O}_v such that $\overline{Q_i}^v$ is anisotropic for each *i*. Then the anisotropic quadratic space

$$(V,Q) = (V_1^K \times \ldots \times V_m^K, \ \pi_1 Q_1^K \perp \ldots \perp \pi_m Q_m^K)$$

has residue forms $r_{\pi_i}(Q) \cong \overline{Q_i}^{\nu}$ for i = 1, ..., m, and $r_{\pi}(Q) = 0$ for $\pi \in K^{\times}$ with $\nu(\pi) \notin \nu(\pi_i) + 2\nu K$ for all i.

Residue forms

Applications

Non-dyadic henselian valued fields

Theorem 3.2

Let (K, v) be a non-dyadic henselian valued field.

Every regular quadratic space over K is isometric to a space of the form (V₁^K × ... × V_m^K, π₁Q₁^K ⊥ ... ⊥ π_mQ_m^K) where π₁,..., π_m ∈ K are such that v(π₁),..., v(π_m) represent different elements in vK/2vK, (V_i, Q_i) is a quadratic space over O_v, and Q_i is regular.

Non-dyadic henselian valued fields

Theorem 3.2

Let (K, v) be a non-dyadic henselian valued field.

- Every regular quadratic space over K is isometric to a space of the form (V₁^K × ... × V_m^K, π₁Q₁^K ⊥ ... ⊥ π_mQ_m^K) where π₁,..., π_m ∈ K are such that v(π₁),..., v(π_m) represent different elements in vK/2vK, (V_i, Q_i) is a quadratic space over O_v, and Q_i is regular.
- Given anisotropic quadratic spaces (V_1, Q_1) and (V_2, Q_2) over K such that $r_{\pi}(Q_1) \cong r_{\pi}(Q_2)$ for all $\pi \in K^{\times}$, we have $Q_1 \cong Q_2$.

Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let $(\pi_{\gamma})_{\gamma \in vK/2vK} \in K^{vK/2vK}$ be such that $v(\pi_{\gamma}) \in \gamma$.

Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let $(\pi_{\gamma})_{\gamma \in vK/2vK} \in K^{vK/2vK}$ be such that $v(\pi_{\gamma}) \in \gamma$.

• For an anisotropic quadratic space (V, Q), we have $\sum_{\gamma \in \nu K/2\nu K} \dim(\mathbf{r}_{\pi_{\gamma}}(Q)) \leq \dim(Q)$, but we might not have equality.

Applications

Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let $(\pi_{\gamma})_{\gamma \in vK/2vK} \in K^{vK/2vK}$ be such that $v(\pi_{\gamma}) \in \gamma$.

- For an anisotropic quadratic space (V, Q), we have $\sum_{\gamma \in \nu K/2\nu K} \dim(\mathbf{r}_{\pi_{\gamma}}(Q)) \leq \dim(Q)$, but we might not have equality.
- Even if we do have $\sum_{\gamma \in \nu K/2\nu K} \dim(r_{\pi_{\gamma}}(Q)) = \dim(Q)$, the forms $r_{\pi_{\gamma}}(Q)$ do not in general uniquely determine the quadratic space (V, Q) up to isometry.

Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let $(\pi_{\gamma})_{\gamma \in vK/2vK} \in K^{vK/2vK}$ be such that $v(\pi_{\gamma}) \in \gamma$.

- For an anisotropic quadratic space (V, Q), we have $\sum_{\gamma \in \nu K/2\nu K} \dim(\mathbf{r}_{\pi_{\gamma}}(Q)) \leq \dim(Q)$, but we might not have equality.
- Even if we do have $\sum_{\gamma \in vK/2vK} \dim(r_{\pi_{\gamma}}(Q)) = \dim(Q)$, the forms $r_{\pi_{\gamma}}(Q)$ do not in general uniquely determine the quadratic space (V, Q) up to isometry.
- There could be an anisotropic quadratic space (V, Q) and a valued field extension (K', v') such that Q is isotropic over K', but vK = v'K' and Kv = K'v'.

Applications

Subtleties in the dyadic case

Let (K, v) be a dyadic henselian valued field. Let $(\pi_{\gamma})_{\gamma \in vK/2vK} \in K^{vK/2vK}$ be such that $v(\pi_{\gamma}) \in \gamma$.

- For an anisotropic quadratic space (V, Q), we have $\sum_{\gamma \in \nu K/2\nu K} \dim(\mathbf{r}_{\pi_{\gamma}}(Q)) \leq \dim(Q)$, but we might not have equality.
- Even if we do have $\sum_{\gamma \in vK/2vK} \dim(r_{\pi_{\gamma}}(Q)) = \dim(Q)$, the forms $r_{\pi_{\gamma}}(Q)$ do not in general uniquely determine the quadratic space (V, Q) up to isometry.
- There could be an anisotropic quadratic space (V, Q) and a valued field extension (K', v') such that Q is isotropic over K', but vK = v'K' and Kv = K'v'.

See the exercises for examples.

Residue forms

Applications

Subtleties in the dyadic case

Theorem 3.3 (Mammone, Moresi, Wadsworth [MMW91])

Let (K, v) a henselian \mathbb{Z} -valued field with uniformiser π , let Q be a quadratic form over K. Then dim $(Q) = \dim(r_1(Q)) + \dim(r_\pi(Q))$ as soon as one of the following holds:

- $\operatorname{char}(K) \neq 2$,
- Q is non-degenerate (= regular over the algebraic closure \overline{K}),
- char(K) = 2 and $[K : K^2] = 2[Kv : Kv^2].$

Valued fields & quadratic forms: first observations ${\scriptstyle 000000000000}$

Residue forms

Applications

Subtleties in the dyadic case

Definition 3.4

Let K be a field. A quadratic space (V, Q) is called *nonsingular* if the associated bilinear form \mathfrak{b}_Q is nonsingular, i.e.

$$\forall v \in K \ \exists w \in K : Q(v+w) \neq Q(v) + Q(w).$$

Nonsingular quadratic spaces are always regular. Over fields of characteristic different from two, the converse holds.

Residue forms

Applications

Subtleties in the dyadic case

Definition 3.4

Let K be a field. A quadratic space (V, Q) is called *nonsingular* if the associated bilinear form \mathfrak{b}_Q is nonsingular, i.e.

$$\forall v \in K \ \exists w \in K : Q(v+w) \neq Q(v) + Q(w).$$

Nonsingular quadratic spaces are always regular. Over fields of characteristic different from two, the converse holds. Examples:

- $X_1^2 + X_1X_2 + X_2^2$ is nonsingular over \mathbb{F}_2 ,
- $X_1^2 + X_1X_2 + X_2^2 + X_3^2$ is regular but not nonsingular over \mathbb{F}_2 .

Applications

Theorem 3.5 (Tietze; Elomary, Tignol [Tie74; ET11])

Let (K, v) be a dyadic henselian valued field, Q an anisotropic quadratic form over K. The following are equivalent:

- Q is hyperbolic over some inert extension (L, w) of (K, v) (i.e. (L, w)/(K, v) is separable algebraic and defectless, Lw/Kv is separable, and vK = wL),
- 2 all residue forms of Q are nonsingular,
- Q is isometric to an orthogonal sum of forms of the form $a_1X^2 + a_2XY + a_3Y^2$ with $v(a_2) \le \frac{v(a_1) + v(a_3)}{2}$.

When Q satisfies these equivalent conditions, then $\dim(Q) = \sum_{\gamma \in \nu K/2\nu K} r_{\pi_{\gamma}}(Q)$, and if Q' is another anisotropic quadratic form with $r_{\pi}(Q) \cong r_{\pi}(Q')$ for all $\pi \in K^{\times}$, then $Q \cong Q'$. Valued fields & quadratic forms: first observations ${\scriptstyle 0000000000000}$

Residue forms Applications

Section 4

Applications

- Quadratic forms (coordinate-freely)
- 2 Valued fields & quadratic forms: first observations
- 3 Residue forms
- 4 Applications
 - Classification of quadratic forms
 - Quadratic forms under field extensions

Valued fields & quadratic forms: first observations ${\scriptstyle 000000000000}$

Residue forms

Applications

Classification of quadratic forms

Residue forms can be used to study the quadratic form theory of a henselian valued field (K, v) via that of its residue field. See exercises.

Classification of quadratic forms

Residue forms can be used to study the quadratic form theory of a henselian valued field (K, v) via that of its residue field. See exercises.

Proposition 4.1

Let (K, v) be a henselian \mathbb{Z} -valued field, $n \in \mathbb{N}$. Suppose that every (n + 1)-dimensional quadratic form over Kv is isotropic. Then every nondegenerate (2n + 1)-dimensional quadratic form over K is isotropic.

Proof: Exercise.

Valued fields & quadratic forms: first observations

Residue forms 0000000000000 Applications

Classification of quadratic forms

Proposition 4.2

Let (K, v) be a non-dyadic henselian valued field, $n \in \mathbb{N}$. Suppose that every (n + 1)-dimensional quadratic form over Kv is isotropic, and there is a unique anisotropic n-dimensional quadratic form over Kv up to isometry. Then every ([vK : 2vK]n + 1)-dimensional quadratic form over K is isotropic, and there is a unique anisotropic [vK : 2vK]n-dimensional quadratic form over K.

Proof: Exercise.

Residue forms

Applications

Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L, w)/(K, v) a valued field extension such that wL = vK. Let $\pi_1, \ldots, \pi_m \in K^{\times}$ such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Assume that (V, Q) is an anisotropic quadratic space over K with $\dim(Q) = \sum_{i=1}^m r_{\pi_i}(Q)$. Then

Residue forms

Applications

Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L, w)/(K, v) a valued field extension such that wL = vK. Let $\pi_1, \ldots, \pi_m \in K^{\times}$ such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Assume that (V, Q) is an anisotropic quadratic space over K with $\dim(Q) = \sum_{i=1}^m r_{\pi_i}(Q)$. Then

• if $r_{\pi_i}(Q)$ is anisotropic over Lw for all *i*, then Q^L is anisotropic,

Residue forms

Applications

Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L, w)/(K, v) a valued field extension such that wL = vK. Let $\pi_1, \ldots, \pi_m \in K^{\times}$ such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Assume that (V, Q) is an anisotropic quadratic space over K with $\dim(Q) = \sum_{i=1}^m r_{\pi_i}(Q)$. Then

- if $r_{\pi_i}(Q)$ is anisotropic over Lw for all *i*, then Q^L is anisotropic,
- if r_{πi}(Q) has a nonsingular zero over Lw for some i, then Q has a nonsingular zero over Lw.

Residue forms

Applications

Quadratic forms under field extensions

Proposition 4.3

Let (K, v) be a henselian valued field, (L, w)/(K, v) a valued field extension such that wL = vK. Let $\pi_1, \ldots, \pi_m \in K^{\times}$ such that $v(\pi_1), \ldots, v(\pi_m)$ represent different classes in vK/2vK. Assume that (V, Q) is an anisotropic quadratic space over K with $\dim(Q) = \sum_{i=1}^m r_{\pi_i}(Q)$. Then

- if $r_{\pi_i}(Q)$ is anisotropic over Lw for all *i*, then Q^L is anisotropic,
- if r_{πi}(Q) has a nonsingular zero over Lw for some i, then Q has a nonsingular zero over Lw.

Proof sketch of (1): Let $\gamma_i = v(\pi_i)$. Let $\mathcal{B}_i \subseteq V_{\gamma_i}$ be a linearly independent set such that $\{\overline{x} \mid x \in \mathcal{B}_i\}$ is a basis for $V_{\gamma_i}/V_{\gamma_i}^+$. Let $W_i = \langle \mathcal{B}_i \rangle_{\mathcal{O}_v}$. For $x \in W_i^L \setminus \{0\}$ we have $v(q(x)) \in \gamma_i + 2wL$. Since (by comparing dimensions) $V^L = W_1^L \oplus \ldots \oplus W_m^L$, and by the Schwarz Inequality, we obtain that Q^L is anisotropic.

Applications

References

[EP05]	Antonio J. Engler and Alexander Prestel. Valued Fields. Springer, 2005.
[ET11]	Mohamed Abdou Elomary and Jean-Pierre Tignol. "Springer's theorem for tame quadratic forms over Henselian fields". In: <i>Mathematische Zeitschrift</i> 269 (2011), pp. 309–323.
[MMW91]	Pasquale Mammone, Remo Moresi, and Adrian R. Wadsworth. "u-invariants of fields of characteristic 2.". In: <i>Mathematische</i> <i>Zeitschrift</i> 208.3 (1991), pp. 335–348.
[Tie74]	Uwe-Peter Tietze. "Zur Theorie quadratische Formen über Hensel-Körpern". In: Archiv der Mathematik 25 (1974), pp. 144–150.
Nicolas Daa	ns

E-mail: nicolas.daans@uantwerpen.be