

Model-theoretic tools for the busy algebraist

Antwerp Algebra Colloquium

Nicolas Daans

5 November 2021

Table of Contents

1 Structures and first-order formulas

2 Comparing and constructing models

3 Application: the Ax-Grothendieck Theorem

General framework to study classes of mathematical (algebraic) objects defined by "constants, operations and relations"

- A ring is a set A endowed with binary operations +, -, $\cdot : A^2 \rightarrow A$ and two constants 0 and 1 (+ some conditions)
- A poset is a set A endowed with a binary relation ≤, i.e. a subset of A² (+ some conditions)
- An ordered group is a set A endowed with binary operations +, -: A² → A, a constant 0, and one binary relation ≤ (+ some conditions)
- An ℝ-vector space is a set A endowed with binary operations +, -: A² → A, a constant 0, and for each r ∈ ℝ, a unary operation r ·: A → A (+ some conditions)

Formally: we fix a signature (or language) \mathcal{L} , this is a tuple $((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$ where I_n , J_n and K are sets. Elements of I_n are called *n*-ary function symbols, elements of J_n *n*-ary relation symbols and elements of K constant symbols.

Formally: we fix a signature (or language) \mathcal{L} , this is a tuple $((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$ where I_n , J_n and K are sets. Elements of I_n are called *n*-ary function symbols, elements of J_n *n*-ary relation symbols and elements of K constant symbols.

- The signature of rings \mathcal{L}_{ring} : $K = \{0, 1\}, I_2 = \{+, -, \cdot\}$, all other I_n and J_n are empty.
- The signature of \mathbb{R} -vector spaces $\mathcal{L}_{\mathbb{R} \text{ vec}}$: $\mathcal{K} = \{0\}$, $I_1 = \mathbb{R}$, $I_2 = \{+, -\}$, all other I_n and J_n are empty.

Formally: we fix a signature (or language) \mathcal{L} , this is a tuple $((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$ where I_n , J_n and K are sets. Elements of I_n are called *n*-ary function symbols, elements of J_n *n*-ary relation symbols and elements of K constant symbols.

- The signature of rings \mathcal{L}_{ring} : $K = \{0, 1\}, I_2 = \{+, -, \cdot\}$, all other I_n and J_n are empty.
- The signature of \mathbb{R} -vector spaces $\mathcal{L}_{\mathbb{R} \text{vec}}$: $K = \{0\}$, $I_1 = \mathbb{R}$, $I_2 = \{+, -\}$, all other I_n and J_n are empty.

Slightly less formally (abuse of notation): we write a signature as a set of symbols of which it is clear from the context whether they are constant symbols, function symbols of some fixed arity, or relation symbols of a fixed arity.

Formally: we fix a signature (or language) \mathcal{L} , this is a tuple $((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$ where I_n , J_n and K are sets. Elements of I_n are called *n*-ary function symbols, elements of J_n *n*-ary relation symbols and elements of K constant symbols.

- The signature of rings \mathcal{L}_{ring} : $K = \{0, 1\}, I_2 = \{+, -, \cdot\}$, all other I_n and J_n are empty.
- The signature of \mathbb{R} -vector spaces $\mathcal{L}_{\mathbb{R} \text{vec}}$: $K = \{0\}$, $I_1 = \mathbb{R}$, $I_2 = \{+, -\}$, all other I_n and J_n are empty.

Slightly less formally (abuse of notation): we write a signature as a set of symbols of which it is clear from the context whether they are constant symbols, function symbols of some fixed arity, or relation symbols of a fixed arity.

• The signature of ordered groups $\mathcal{L}_{ordgrp} = \{+, -, 0, \leq\}$.

Given a signature $\mathcal{L} = ((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$, an \mathcal{L} -structure is a set A endowed with

- for each $c \in K$, a fixed element $c^A \in A$,
- for each $f \in I_n$, a map $f^A : A^n \to A$,
- for each $R \in J_n$, a set $R^A \subseteq A^n$.

In this way, rings naturally carry an \mathcal{L}_{ring} -structure, \mathbb{R} -vector spaces naturally carry an $\mathcal{L}_{\mathbb{R}\,vec}$ -structure, etc.

Morphisms, substructures, ...

A homomorphism between \mathcal{L} -structures A and B is a map $H : A \to B$ compatible with constants, functions, relations in \mathcal{L} . An *isomorphism* between \mathcal{L} -structures is a bijective homomorphism whose inverse is a homomorphism.

Similarly one defines *embeddings* of \mathcal{L} -structures and \mathcal{L} -substructures. One can define what it means for an \mathcal{L} -structure to be *finitely generated*, *finitely presented*, etc.

Constants, functions and relations of an *L*-structure need not satisfy any properties. In particular, an *L*_{ordgrp}-structure in general does not correspond to an ordered group (associativity, invertibility, transitivity, etc. need not hold), an *L*_{Rvec}-structure need not in general correspond to an R-vector space, ...

- Constants, functions and relations of an *L*-structure need not satisfy any properties. In particular, an *L*_{ordgrp}-structure in general does not correspond to an ordered group (associativity, invertibility, transitivity, etc. need not hold), an *L*_{Rvec}-structure need not in general correspond to an R-vector space, ...
- Why did we choose $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$ and not $\{+, \cdot\}$, or $\{+, \cdot, 0\}$, or $\{+, -, \cdot, ^2, 0, 1\}$, ...?

- Constants, functions and relations of an *L*-structure need not satisfy any properties. In particular, an *L*_{ordgrp}-structure in general does not correspond to an ordered group (associativity, invertibility, transitivity, etc. need not hold), an *L*_{Rvec}-structure need not in general correspond to an R-vector space, ...
- Why did we choose $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$ and not $\{+, \cdot\}$, or $\{+, \cdot, 0\}$, or $\{+, -, \cdot, {}^2, 0, 1\}$, ...?
 - To some extent, the choice is arbitrary, choose what is useful in the context.

- Constants, functions and relations of an *L*-structure need not satisfy any properties. In particular, an *L*_{ordgrp}-structure in general does not correspond to an ordered group (associativity, invertibility, transitivity, etc. need not hold), an *L*_{Rvec}-structure need not in general correspond to an R-vector space, ...
- Why did we choose $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$ and not $\{+, \cdot\}$, or $\{+, \cdot, 0\}$, or $\{+, -, \cdot, {}^2, 0, 1\}$, ...?
 - To some extent, the choice is arbitrary, choose what is useful in the context.
 - Rule of thumb: make a minimal choice such that the notions of *L*-homomorphism, *L*-substructure, etc. correspond to the natural notion (in this case group homomorphism, subgroup, ...)

Constant symbols and function symbols can be formally combined with *variables* (or *variable symbols*) into \mathcal{L} -terms.

• e.g. in \mathcal{L}_{ring} , a term could be $(x_1 + 1) \cdot (x_2 \cdot x_2) - x_3$; its variables are (x_1, x_2, x_3) .

Constant symbols and function symbols can be formally combined with *variables* (or *variable symbols*) into \mathcal{L} -terms.

- e.g. in \mathcal{L}_{ring} , a term could be $(x_1 + 1) \cdot (x_2 \cdot x_2) x_3$; its variables are (x_1, x_2, x_3) .
- Think of terms as formal computations. Carefully indicate order of operations! e.g. in L_{ring}, x · (x · x) is not the same as (x · x) · x.

Constant symbols and function symbols can be formally combined with *variables* (or *variable symbols*) into \mathcal{L} -terms.

- e.g. in \mathcal{L}_{ring} , a term could be $(x_1 + 1) \cdot (x_2 \cdot x_2) x_3$; its variables are (x_1, x_2, x_3) .
- Think of terms as formal computations. Carefully indicate order of operations! e.g. in L_{ring}, x · (x · x) is not the same as (x · x) · x.
- If t is an \mathcal{L} -term in the variables (x_1, \ldots, x_n) , A is an \mathcal{L} -structure and $a_1, \ldots, a_n \in A$, we obtain an element $t^A(a_1, \ldots, a_n) \in A$ by "plugging in" a_1, \ldots, a_n for x_1, \ldots, x_n .

Constant symbols and function symbols can be formally combined with *variables* (or *variable symbols*) into \mathcal{L} -terms.

- e.g. in \mathcal{L}_{ring} , a term could be $(x_1 + 1) \cdot (x_2 \cdot x_2) x_3$; its variables are (x_1, x_2, x_3) .
- Think of terms as formal computations. Carefully indicate order of operations! e.g. in L_{ring}, x · (x · x) is not the same as (x · x) · x.
- If t is an \mathcal{L} -term in the variables (x_1, \ldots, x_n) , A is an \mathcal{L} -structure and $a_1, \ldots, a_n \in A$, we obtain an element $t^A(a_1, \ldots, a_n) \in A$ by "plugging in" a_1, \ldots, a_n for x_1, \ldots, x_n .
- Homomorphisms of *L*-structures are compatible with evaluation of *L*-terms.

 \mathcal{L} -terms can be used to make \mathcal{L} -sentences by meaningfully combining them with relation symbols of \mathcal{L} and the logical symbols $\forall, \exists, \lor, \land, \neg, \doteq$ (and delimeters like ()).

• Examples of \mathcal{L}_{ring} -sentences:

$$orall x orall y(x+y \doteq y+x) \ orall x(x \doteq 0 \lor \exists y(x \cdot y \doteq 1)) \ orall y \exists x(x \cdot x \doteq y) \ \exists x_1 \exists x_2 \forall y(y \doteq x_1 \lor y \doteq x_2) \end{cases}$$

• A set of \mathcal{L} -sentences is called an \mathcal{L} -theory.

. . .

An \mathcal{L} -sentence φ can *hold* in an \mathcal{L} -structure A, which we denote by $A \models \varphi$. If Σ is an \mathcal{L} -theory, we say that Σ *holds in* A, or that A *is a model of* Σ if $A \models \varphi$ for all $\varphi \in \Sigma$; we might denote this by $A \models \Sigma$.

 \blacksquare An ordered group is an $\mathcal{L}_{ordgrp}\mbox{-structure}$ which is a model of the theory consisting of

$$\forall x \forall y (x + y \doteq y + x) \forall x \forall y \forall z (x + y \doteq z \lor \neg (x \doteq z - y)) \forall x \forall y \forall z ((x + y) + z \doteq x + (y + z)) \forall x (x + 0 \doteq x) \forall x \forall y (x \le y \lor y \le x) \forall x \forall y (x \doteq y \lor \neg (x \le y)) \lor \neg (y \le x)) \forall x \forall y \forall z (x + z \le y + z \lor \neg (x \le y))$$

Table of Contents

1 Structures and first-order formulas

2 Comparing and constructing models

3 Application: the Ax-Grothendieck Theorem

 \mathcal{L} -structures A and B are called *isomorphic* (notation: $A \cong B$) if there is an \mathcal{L} -isomorphism $A \to B$.

 \mathcal{L} -structures A and B are called *isomorphic* (notation: $A \cong B$) if there is an \mathcal{L} -isomorphism $A \to B$. \mathcal{L} -structures A and B are called *elementarily equivalent* (notation $A \equiv B$) if for every \mathcal{L} -sentence φ one has $A \models \varphi$ if and only if $B \models \varphi$.

• $A \cong B \Rightarrow A \equiv B$. If $A \equiv B$ and $|A| < \aleph_0$, then $A \cong B$.

 \mathcal{L} -structures A and B are called *isomorphic* (notation: $A \cong B$) if there is an \mathcal{L} -isomorphism $A \to B$. \mathcal{L} -structures A and B are called *elementarily equivalent* (notation $A \equiv B$) if for every \mathcal{L} -sentence φ one has $A \models \varphi$ if and only if $B \models \varphi$.

- $A \cong B \Rightarrow A \equiv B$. If $A \equiv B$ and $|A| < \aleph_0$, then $A \cong B$.
- In L = {≤} (posets), Q ≡ R. In fact, all non-empty sets with a dense total order without endpoints are elementarily equivalent as L-structures.

 \mathcal{L} -structures A and B are called *isomorphic* (notation: $A \cong B$) if there is an \mathcal{L} -isomorphism $A \to B$. \mathcal{L} -structures A and B are called *elementarily equivalent* (notation $A \equiv B$) if for every \mathcal{L} -sentence φ one has $A \models \varphi$ if and only if $B \models \varphi$.

- $A \cong B \Rightarrow A \equiv B$. If $A \equiv B$ and $|A| < \aleph_0$, then $A \cong B$.
- In L = {≤} (posets), Q ≡ R. In fact, all non-empty sets with a dense total order without endpoints are elementarily equivalent as L-structures.
- In L = {+, -, 0}, Q ≡ Qⁿ for all n ≥ 1. In fact, all non-trivial, divisible, torsion-free abelian groups are elementarily equivalent in this language.

 \mathcal{L} -structures A and B are called *isomorphic* (notation: $A \cong B$) if there is an \mathcal{L} -isomorphism $A \to B$. \mathcal{L} -structures A and B are called *elementarily equivalent* (notation $A \equiv B$) if for every \mathcal{L} -sentence φ one has $A \models \varphi$ if and only if $B \models \varphi$.

- $A \cong B \Rightarrow A \equiv B$. If $A \equiv B$ and $|A| < \aleph_0$, then $A \cong B$.
- In L = {≤} (posets), Q ≡ R. In fact, all non-empty sets with a dense total order without endpoints are elementarily equivalent as L-structures.
- In L = {+, -, 0}, Q ≡ Qⁿ for all n ≥ 1. In fact, all non-trivial, divisible, torsion-free abelian groups are elementarily equivalent in this language.
- In $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$, any two algebraically closed fields of the same characteristic are elementarily equivalent.

Given a signature $\mathcal{L} = ((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$, its *cardinality* is defined to be

$$\sum_{n\in\mathbb{N}}|I_n|+\sum_{n\in\mathbb{N}}|J_n|+|K|+\aleph_0$$

and denoted $|\mathcal{L}|.$ Note that $|\mathcal{L}|$ is the cardinality of the set of $\mathcal{L}\text{-formulas}.$

Given a signature $\mathcal{L} = ((I_n)_{n \in \mathbb{N}^+}, (J_n)_{n \in \mathbb{N}^+}, K)$, its *cardinality* is defined to be

$$\sum_{n\in\mathbb{N}}|I_n|+\sum_{n\in\mathbb{N}}|J_n|+|K|+\aleph_0$$

and denoted $|\mathcal{L}|.$ Note that $|\mathcal{L}|$ is the cardinality of the set of $\mathcal{L}\text{-formulas}.$

Theorem (Löwenheim-Skolem)

Let \mathcal{L} be a signature, λ a cardinal with $\lambda \geq |\mathcal{L}|$, A an infinite \mathcal{L} -structure. There exists an \mathcal{L} -structure B with $A \equiv B$ and $|B| = \lambda$.

Note: the actual Löwenheim-Skolem Theorem says more about how A and B can be chosen to relate.

Corollary

Let $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$. Any two algebraically closed fields of the same characteristic are elementarily equivalent as \mathcal{L}_{ring} -structures.

Corollary

Let $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$. Any two algebraically closed fields of the same characteristic are elementarily equivalent as \mathcal{L}_{ring} -structures.

Proof.

Suppose K and L are algebraically closed fields of the same characteristic and with $|K| = |L| = \lambda > \aleph_0$. Claim: $K \cong L$.

Corollary

Let $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$. Any two algebraically closed fields of the same characteristic are elementarily equivalent as \mathcal{L}_{ring} -structures.

Proof.

• Suppose K and L are algebraically closed fields of the same characteristic and with $|K| = |L| = \lambda > \aleph_0$. Claim: $K \cong L$. Denote by F their prime field (i.e. \mathbb{Q} in characteristic 0, \mathbb{F}_p in characteristic p). Since K and L have the same transcendence degree λ over F, their purely transcendental parts are isomorphic. This isomorphism can be extended to an isomorphism between K and L by the universal property of the algebraic closure.

Corollary

Let $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$. Any two algebraically closed fields of the same characteristic are elementarily equivalent as \mathcal{L}_{ring} -structures.

Proof.

- Suppose K and L are algebraically closed fields of the same characteristic and with $|K| = |L| = \lambda > \aleph_0$. Claim: $K \cong L$. Denote by F their prime field (i.e. \mathbb{Q} in characteristic 0, \mathbb{F}_p in characteristic p). Since K and L have the same transcendence degree λ over F, their purely transcendental parts are isomorphic. This isomorphism can be extended to an isomorphism between K and L by the universal property of the algebraic closure.
- Suppose that K and L are algebraically closed fields of the same characteristic. By the Löwenheim-Skolem Theorem, there exist fields K' and L' such that K ≡ K', L ≡ L' and |K'| = |L'| = ℵ₁. By the first part, K' ≅ L'. We conclude that K ≡ K' ≡ L' ≡ L.

The Compactness Theorem

Theorem (Compactness Theorem)

Let \mathcal{L} be a signature, Σ an \mathcal{L} -theory. Suppose that every finite $\Sigma_0 \subseteq \Sigma$ has a model. Then Σ has a model.

The Compactness Theorem

Theorem (Compactness Theorem)

Let \mathcal{L} be a signature, Σ an \mathcal{L} -theory. Suppose that every finite $\Sigma_0 \subseteq \Sigma$ has a model. Then Σ has a model.

Example: let L_{ring} = {+, -, ·, 0, 1}, φ an L_{ring}-sentence such that K ⊨ φ whenever K is a field with char K = 0. Then ∃m ∈ ℕ such that K ⊨ φ whenever K is a field with char K ≥ m.

The Compactness Theorem

Theorem (Compactness Theorem)

Let \mathcal{L} be a signature, Σ an \mathcal{L} -theory. Suppose that every finite $\Sigma_0 \subseteq \Sigma$ has a model. Then Σ has a model.

- Example: let L_{ring} = {+, -, ·, 0, 1}, φ an L_{ring}-sentence such that K ⊨ φ whenever K is a field with char K = 0. Then ∃m ∈ ℕ such that K ⊨ φ whenever K is a field with char K ≥ m.
- The Löwenheim-Skolem Theorem and the Compactness Theorem require (some form of) the Axiom of Choice to prove.

Table of Contents

- 1 Structures and first-order formulas
- 2 Comparing and constructing models
- 3 Application: the Ax-Grothendieck Theorem

Theorem (Ax-Grothendieck)

Let $n \in \mathbb{N}$, $V \subseteq \mathbb{C}^n$ an algebraic set over \mathbb{C} , $f : V \to V$ an injective rational map. Then f is surjective.

Theorem (Ax-Grothendieck)

Let $n \in \mathbb{N}$, $V \subseteq \mathbb{C}^n$ an algebraic set over \mathbb{C} , $f : V \to V$ an injective rational map. Then f is surjective.

Proof.

Consider for a field K the following property

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective, (1)

and observe the following:

Theorem (Ax-Grothendieck)

Let $n \in \mathbb{N}$, $V \subseteq \mathbb{C}^n$ an algebraic set over \mathbb{C} , $f : V \to V$ an injective rational map. Then f is surjective.

Proof.

Consider for a field K the following property

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective, (1)

and observe the following:

Finite fields satisfy (1) by the Pigeon Hole Principle.

Theorem (Ax-Grothendieck)

Let $n \in \mathbb{N}$, $V \subseteq \mathbb{C}^n$ an algebraic set over \mathbb{C} , $f : V \to V$ an injective rational map. Then f is surjective.

Proof.

Consider for a field K the following property

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective, (1)

and observe the following:

- Finite fields satisfy (1) by the Pigeon Hole Principle.
- Algebraic extensions of finite fields satisfy (1): an algebraic set V, a polynomial map f : V → V and an element x ∈ V are all defined over a finite subfield, so this reduces to the previous case.
 In particular, there exist algebraically closed fields of each positive characteristic p satisfying (1).

Proof.

Consider for a field K the following property

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective,

and observe the following:

■ There exist algebraically closed fields of each positive characteristic *p* satisfying (1).

Proof.

Consider for a field K the following property

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective,

and observe the following:

- There exist algebraically closed fields of each positive characteristic *p* satisfying (1).
- Property (1) is described by an L_{ring}-theory Σ, i.e. a field satisfies (1) if and only if it is a model of Σ.

Proof.

```
Consider for a field K the following property
```

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective,

and observe the following:

- There exist algebraically closed fields of each positive characteristic *p* satisfying (1).
- Property (1) is described by an L_{ring}-theory Σ, i.e. a field satisfies (1) if and only if it is a model of Σ.
- By the Compactness Theorem, there exists an algebraically closed field *K* of characteristic 0 satisfying (1).

University of Antwe

Proof.

```
Consider for a field K the following property
```

for every $n \in \mathbb{N}$ and every algebraic set $V \subseteq K^n$, every injective rational map $f: V \to V$ is surjective,

and observe the following:

- There exist algebraically closed fields of each positive characteristic *p* satisfying (1).
- Property (1) is described by an L_{ring}-theory Σ, i.e. a field satisfies (1) if and only if it is a model of Σ.
- By the Compactness Theorem, there exists an algebraically closed field K of characteristic 0 satisfying (1).
- Since $K \equiv \mathbb{C}$, also \mathbb{C} satisfies (1).

University of Antwer

Further reading

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[Tao09] Terrence Tao. Infinite fields, finite fields, and the Ax-Grothendieck theorem. https://terrytao.wordpress.com/2009/03/07/infinitefields-finite-fields-and-the-ax-grothendiecktheorem/. Blog post. Mar. 2009.

Nicolas Daans *E-mail*: nicolas.daans@uantwerpen.be *Office:* M.G.223

