University of Antwerp
I Faculty of Science

Model-theoretic tools for the busy
algebraist
Antwerp Algebra Colloquium

Nicolas Daans

5 November 2021



Table of Contents

Structures and first-order formulas

2/19



Structures and signatures

General framework to study classes of mathematical (algebraic)
objects defined by “constants, operations and relations”

m A ring is a set A endowed with binary operations
+,—,-: A2 — A and two constants 0 and 1 (+ some conditions)
m A poset is a set A endowed with a binary relation <, i.e. a
subset of A% (4 some conditions)

m An ordered group is a set A endowed with binary operations
+,—: A2 = A, a constant 0, and one binary relation < (+ some
conditions)

m An R-vector space is a set A endowed with binary operations
+,—: A2 > A, a constant 0, and for each r € R, a unary
operation r- : A — A (+ some conditions)
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Structures and signatures

Formally: we fix a signature (or language) L, this is a tuple

((In)nen+, (In)nen+, K) where I, J, and K are sets. Elements of /,

are called n-ary function symbols, elements of J, n-ary relation
symbols and elements of K constant symbols.
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Formally: we fix a signature (or language) L, this is a tuple
((In)nen+, (In)nen+, K) where I, J, and K are sets. Elements of /,
are called n-ary function symbols, elements of J, n-ary relation
symbols and elements of K constant symbols.

m The signature of rings Lying: K ={0,1}, b = {+,—,-}, all
other I, and J, are empty.

m The signature of R-vector spaces Lryec: K = {0}, h =R,
I = {+,—}, all other I, and J, are empty.

Slightly less formally (abuse of notation): we write a signature as a
set of symbols of which it is clear from the context whether they are
constant symbols, function symbols of some fixed arity, or relation
symbols of a fixed arity.

m The signature of ordered groups Lordgrp = {4+, —, 0, <}.
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Structures and signatures

Given a signature £ = ((In)pen+, (In)nen+, K), an L-structure is a
set A endowed with

m for each ¢ € K, a fixed element c¢” € A,
m for each f € I,, a map f4: A" — A,
m for each R € J,, a set RA C A",

In this way, rings naturally carry an L,ing-structure, R-vector spaces
naturally carry an Lgec-structure, etc.
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Morphisms, substructures, ...

A homomorphism between L-structures Aand Bisamap H: A— B
compatible with constants, functions, relations in £. An isomorphism
between L-structures is a bijective homomorphism whose inverse is a
homomorphism.

Similarly one defines embeddings of L-structures and
L-substructures. One can define what it means for an L-structure to
be finitely generated, finitely presented, etc.
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A few caveats

m Constants, functions and relations of an L-structure need not
satisfy any properties. In particular, an Lyqgrp-structure in
general does not correspond to an ordered group (associativity,
invertibility, transitivity, etc. need not hold), an Lgec-structure
need not in general correspond to an R-vector space, ...
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A few caveats

m Constants, functions and relations of an L-structure need not
satisfy any properties. In particular, an Lyqgrp-structure in
general does not correspond to an ordered group (associativity,
invertibility, transitivity, etc. need not hold), an Lgec-structure
need not in general correspond to an R-vector space, ...

m Why did we choose Lying = {+,—,-,0,1} and not {+,}, or
{+,-,0}, or {+,—,-,2,0,1}, ...?

m To some extent, the choice is arbitrary, choose what is useful in
the context.

m Rule of thumb: make a minimal choice such that the notions of
L-homomorphism, L-substructure, etc. correspond to the natural
notion (in this case group homomorphism, subgroup, ...)
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L-terms and L-sentences

Constant symbols and function symbols can be formally combined
with variables (or variable symbols) into L-terms.

B eg. in Lyng, a term could be (x; + 1) - (x2 - x2) — x3; its
variables are (x1, x2, x3).
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Constant symbols and function symbols can be formally combined
with variables (or variable symbols) into L-terms.

B eg. in Lyng, a term could be (x; + 1) - (x2 - x2) — x3; its
variables are (x1, x2, x3).

m Think of terms as formal computations. Carefully indicate order
of operations! e.g. in Lying, X - (X - X) is not the same as

(x-x)-x.

m If tis an L-term in the variables (xi,...,xp), Ais an
L-structure and a1, ...,a, € A, we obtain an element
tA(al, ...,an) € A by “plugging in" a1,...,a, for xi,...,X,.

m Homomorphisms of L-structures are compatible with evaluation
of L-terms.
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L-terms and L-sentences

L-terms can be used to make L-sentences by meaningfully combining
them with relation symbols of £ and the logical symbols
V,3,V, A, =, = (and delimeters like ()).

m Examples of L,i,g-sentences:

VxVy(x +y =y +x)

Vx(x =0V 3y(x-y=1))
Vydx(x-x =y)

I IxVy(y = x1 Vy = x)

m A set of L-sentences is called an L-theory.
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L-terms and L-sentences

An L-sentence ¢ can hold in an L-structure A, which we denote by
A E . If £ is an L-theory, we say that X holds in A, or that A is a
model of ¥ if A |= ¢ for all ¢ € ¥; we might denote this by A = X.

m An ordered group is an Lordgrp-structure which is a model of the
theory consisting of
VxVy(x+y =y+x)
VxVyVz(x+y =zV —|(x =z—y))
VxVyVz((x +y) +z=x+ (y + 2))
Vx(x 4+ 0 = x)
VxVy(x <y Vy < x)
VxVy(x =y Vo(x < y)V-(y <x))
VxVyVz(x +z <y +zV ~(x <y))
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Classifying structures

L-structures A and B are called isomorphic (notation: A = B) if
there is an L-isomorphism A — B.
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L-structures A and B are called isomorphic (notation: A = B) if
there is an L-isomorphism A — B.

L-structures A and B are called elementarily equivalent (notation
A = B) if for every L-sentence ¢ one has A |= ¢ if and only if

B .

m A B=A=B. If A= B and |A| < Ny, then A~ B.

m In £ = {<} (posets), Q@ = R. In fact, all non-empty sets with a
dense total order without endpoints are elementarily equivalent
as L-structures.

miInL={+ -0}, Q=Q" forall n>1. In fact, all non-trivial,
divisible, torsion-free abelian groups are elementarily equivalent
in this language.

m In Ling = {+,—,-,0,1}, any two algebraically closed fields of
the same characteristic are elementarily equivalent.
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The Lowenheim-Skolem Theorem

Given a signature £ = ((In)nen+, (In)nen+, K), its cardinality is

defined to be
> lal + > " 1nl + K|+ Ro
neN neN

and denoted |£|. Note that |£| is the cardinality of the set of
L-formulas.
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The Lowenheim-Skolem Theorem

Given a signature £ = ((In)nen+, (In)nen+, K), its cardinality is

defined to be

> lal + > " 1nl + K|+ Ro

neN neN
and denoted |£|. Note that |£| is the cardinality of the set of
L-formulas.

Let L be a signature, X a cardinal with X\ > |L|, A an infinite L-structure. There exists an

Theorem (Léwenheim-Skolem)
L-structure B with A= B and |B| = \. J

Note: the actual Léwenheim-Skolem Theorem says more about how
A and B can be chosen to relate.
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The Lowenheim-Skolem Theorem

Corollary

Let Lying = {+,—,-,0,1}. Any two algebraically closed fields of the same characteristic
are elementarily equivalent as Lying-structures.
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The Lowenheim-Skolem Theorem

Corollary

Let Lying = {+,—,-,0,1}. Any two algebraically closed fields of the same characteristic
are elementarily equivalent as Lying-structures.

Proof.

m Suppose K and L are algebraically closed fields of the same characteristic and with
|K| = |L] =X > Np. Claim: K= L.
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The Lowenheim-Skolem Theorem

Corollary

Let Lying = {+,—,-,0,1}. Any two algebraically closed fields of the same characteristic
are elementarily equivalent as Lyi,g-structures.

Proof.

m Suppose K and L are algebraically closed fields of the same characteristic and with
|K| = |L] = A > Ng. Claim: K =2 L. Denote by F their prime field (i.e. Q in
characteristic 0, F, in characteristic p). Since K and L have the same
transcendence degree \ over F, their purely transcendental parts are isomorphic.
This isomorphism can be extended to an isomorphism between K and L by the
universal property of the algebraic closure.
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The Lowenheim-Skolem Theorem

Corollary

Let Lying = {+,—,-,0,1}. Any two algebraically closed fields of the same characteristic
are elementarily equivalent as Lyi,g-structures.

Proof.

m Suppose K and L are algebraically closed fields of the same characteristic and with
|K| = |L] = A > Ng. Claim: K =2 L. Denote by F their prime field (i.e. Q in
characteristic 0, F, in characteristic p). Since K and L have the same
transcendence degree \ over F, their purely transcendental parts are isomorphic.
This isomorphism can be extended to an isomorphism between K and L by the
universal property of the algebraic closure.

m Suppose that K and L are algebraically closed fields of the same characteristic. By
the Lowenheim-Skolem Theorem, there exist fields K’ and L’ such that K = K,
L=1"and |K'| = |L'| = X;. By the first part, K’ 22 L’. We conclude that
K=K =L'=1L.
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The Compactness Theorem

Theorem (Compactness Theorem)

Let L be a signature, ¥ an L-theory. Suppose that every finite ¥y C ¥ has a model.
Then ¥ has a model.

University of Antwerp
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The Compactness Theorem

Theorem (Compactness Theorem)

Let L be a signature, ¥ an L-theory. Suppose that every finite ¥y C ¥ has a model.
Then X has a model.

m Example: let Lyjng = {+,—,-,0,1}, ¢ an Lyng-sentence such
that K = ¢ whenever K is a field with char K = 0. Then
dm € N such that K |= ¢ whenever K is a field with
char K > m.
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The Compactness Theorem

Theorem (Compactness Theorem)

Let L be a signature, ¥ an L-theory. Suppose that every finite ¥y C ¥ has a model.
Then X has a model.

m Example: let Lyjng = {+,—,-,0,1}, ¢ an Lyng-sentence such
that K = ¢ whenever K is a field with char K = 0. Then
dm € N such that K |= ¢ whenever K is a field with
char K > m.

m The Lowenheim-Skolem Theorem and the Compactness
Theorem require (some form of) the Axiom of Choice to prove.
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The Ax-Grothendieck Theorem

Theorem (Ax-Grothendieck)

Let n € N, V C C" an algebraic set over C, f : V — V an injective rational map. Then f
is surjective.
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Theorem (Ax-Grothendieck)

Let n € N, V C C" an algebraic set over C, f : V — V an injective rational map. Then f
is surjective.

v

Proof.
Consider for a field K the following property

for every n € N and every algebraic set V C K", every injective rational map 1)
f:V — V is surjective,

and observe the following:
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The Ax-Grothendieck Theorem

Theorem (Ax-Grothendieck)

Let n € N, V C C" an algebraic set over C, f : V. — V an injective rational map. Then f

is surjective.
v

Proof.
Consider for a field K the following property

for every n € N and every algebraic set V C K", every injective rational map 1)
f:V — V is surjective,

and observe the following:
m Finite fields satisfy (1) by the Pigeon Hole Principle.

m Algebraic extensions of finite fields satisfy (1): an algebraic set V, a polynomial
map f : V — V and an element x € V are all defined over a finite subfield, so this
reduces to the previous case.

In particular, there exist algebraically closed fields of each positive characteristic p
satisfying (1).
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Proof.
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for every n € N and every algebraic set V C K", every injective rational map
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The Ax-Grothendieck Theorem

Proof.
Consider for a field K the following property

for every n € N and every algebraic set V C K", every injective rational map
f:V — V is surjective,

and observe the following:
m There exist algebraically closed fields of each positive characteristic p satisfying (1).

m Property (1) is described by an Lying-theory ¥, i.e. a field satisfies (1) if and only if
it is a model of X.

m By the Compactness Theorem, there exists an algebraically closed field K of
characteristic 0 satisfying (1).

m Since K = C, also C satisfies (1).
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Further reading

[Hod97]  Wilfrid Hodges. A Shorter Model Theory. Cambridge University
Press, 1997.

[Tac09]  Terrence Tao. Infinite fields, finite fields, and the
Ax-Grothendieck theorem.
https://terrytao.wordpress.com/2009/03/07/infinite-
fields-finite-fields-and-the-ax-grothendieck-
theorem/. Blog post. Mar. 2009.

Nicolas Daans
E-mail: nicolas.daans@uantwerpen.be
Office: M.G.223
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