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Structures and signatures

General framework to study classes of mathematical (algebraic)
objects defined by “constants, operations and relations”

A ring is a set A endowed with binary operations
+,−, · : A2 → A and two constants 0 and 1 (+ some conditions)

A poset is a set A endowed with a binary relation ≤, i.e. a
subset of A2 (+ some conditions)

An ordered group is a set A endowed with binary operations
+,− : A2 → A, a constant 0, and one binary relation ≤ (+ some
conditions)

An R-vector space is a set A endowed with binary operations
+,− : A2 → A, a constant 0, and for each r ∈ R, a unary
operation r · : A→ A (+ some conditions)
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Structures and signatures
Formally: we fix a signature (or language) L, this is a tuple
((In)n∈N+ , (Jn)n∈N+ ,K ) where In, Jn and K are sets. Elements of In
are called n-ary function symbols, elements of Jn n-ary relation
symbols and elements of K constant symbols.

The signature of rings Lring: K = {0, 1}, I2 = {+,−, ·}, all
other In and Jn are empty.

The signature of R-vector spaces LR vec: K = {0}, I1 = R,
I2 = {+,−}, all other In and Jn are empty.

Slightly less formally (abuse of notation): we write a signature as a
set of symbols of which it is clear from the context whether they are
constant symbols, function symbols of some fixed arity, or relation
symbols of a fixed arity.

The signature of ordered groups Lordgrp = {+,−, 0,≤}.
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Structures and signatures

Given a signature L = ((In)n∈N+ , (Jn)n∈N+ ,K ), an L-structure is a
set A endowed with

for each c ∈ K , a fixed element cA ∈ A,

for each f ∈ In, a map f A : An → A,

for each R ∈ Jn, a set RA ⊆ An.

In this way, rings naturally carry an Lring-structure, R-vector spaces
naturally carry an LR vec-structure, etc.
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Morphisms, substructures, . . .

A homomorphism between L-structures A and B is a map H : A→ B
compatible with constants, functions, relations in L. An isomorphism
between L-structures is a bijective homomorphism whose inverse is a
homomorphism.

Similarly one defines embeddings of L-structures and
L-substructures. One can define what it means for an L-structure to
be finitely generated, finitely presented, etc.
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A few caveats

Constants, functions and relations of an L-structure need not
satisfy any properties. In particular, an Lordgrp-structure in
general does not correspond to an ordered group (associativity,
invertibility, transitivity, etc. need not hold), an LR vec-structure
need not in general correspond to an R-vector space, . . .

Why did we choose Lring = {+,−, ·, 0, 1} and not {+, ·}, or
{+, ·, 0}, or {+,−, ·, 2, 0, 1}, . . . ?

To some extent, the choice is arbitrary, choose what is useful in
the context.
Rule of thumb: make a minimal choice such that the notions of
L-homomorphism, L-substructure, etc. correspond to the natural
notion (in this case group homomorphism, subgroup, . . . )
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L-terms and L-sentences
Constant symbols and function symbols can be formally combined
with variables (or variable symbols) into L-terms.

e.g. in Lring, a term could be (x1 + 1) · (x2 · x2)− x3; its
variables are (x1, x2, x3).

Think of terms as formal computations. Carefully indicate order
of operations! e.g. in Lring, x · (x · x) is not the same as
(x · x) · x .

If t is an L-term in the variables (x1, . . . , xn), A is an
L-structure and a1, . . . , an ∈ A, we obtain an element
tA(a1, . . . , an) ∈ A by “plugging in” a1, . . . , an for x1, . . . , xn.

Homomorphisms of L-structures are compatible with evaluation
of L-terms.
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L-terms and L-sentences

L-terms can be used to make L-sentences by meaningfully combining
them with relation symbols of L and the logical symbols
∀,∃,∨,∧,¬, .= (and delimeters like ()).

Examples of Lring-sentences:

∀x∀y(x + y
.

= y + x)

∀x(x
.

= 0 ∨ ∃y(x · y .
= 1))

∀y∃x(x · x .
= y)

∃x1∃x2∀y(y
.

= x1 ∨ y
.

= x2)

A set of L-sentences is called an L-theory.
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L-terms and L-sentences
An L-sentence ϕ can hold in an L-structure A, which we denote by
A |= ϕ. If Σ is an L-theory, we say that Σ holds in A, or that A is a
model of Σ if A |= ϕ for all ϕ ∈ Σ; we might denote this by A |= Σ.

An ordered group is an Lordgrp-structure which is a model of the
theory consisting of

∀x∀y(x + y
.

= y + x)

∀x∀y∀z(x + y
.

= z ∨ ¬(x
.

= z − y))

∀x∀y∀z((x + y) + z
.

= x + (y + z))

∀x(x + 0
.

= x)

∀x∀y(x ≤ y ∨ y ≤ x)

∀x∀y(x
.

= y ∨ ¬(x ≤ y) ∨ ¬(y ≤ x))

∀x∀y∀z(x + z ≤ y + z ∨ ¬(x ≤ y))

. . .
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Classifying structures
L-structures A and B are called isomorphic (notation: A ∼= B) if
there is an L-isomorphism A→ B.

L-structures A and B are called elementarily equivalent (notation
A ≡ B) if for every L-sentence ϕ one has A |= ϕ if and only if
B |= ϕ.

A ∼= B ⇒ A ≡ B. If A ≡ B and |A| < ℵ0, then A ∼= B.

In L = {≤} (posets), Q ≡ R. In fact, all non-empty sets with a
dense total order without endpoints are elementarily equivalent
as L-structures.

In L = {+,−, 0}, Q ≡ Qn for all n ≥ 1. In fact, all non-trivial,
divisible, torsion-free abelian groups are elementarily equivalent
in this language.

In Lring = {+,−, ·, 0, 1}, any two algebraically closed fields of
the same characteristic are elementarily equivalent.
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The Löwenheim-Skolem Theorem

Given a signature L = ((In)n∈N+ , (Jn)n∈N+ ,K ), its cardinality is
defined to be ∑

n∈N
|In|+

∑
n∈N
|Jn|+ |K |+ ℵ0

and denoted |L|. Note that |L| is the cardinality of the set of
L-formulas.

Theorem (Löwenheim-Skolem)

Let L be a signature, λ a cardinal with λ ≥ |L|, A an infinite L-structure. There exists an
L-structure B with A ≡ B and |B| = λ.

Note: the actual Löwenheim-Skolem Theorem says more about how
A and B can be chosen to relate.
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The Löwenheim-Skolem Theorem

Corollary

Let Lring = {+,−, ·, 0, 1}. Any two algebraically closed fields of the same characteristic
are elementarily equivalent as Lring-structures.

Proof.

Suppose K and L are algebraically closed fields of the same characteristic and with
|K | = |L| = λ > ℵ0. Claim: K ∼= L. Denote by F their prime field (i.e. Q in
characteristic 0, Fp in characteristic p). Since K and L have the same
transcendence degree λ over F , their purely transcendental parts are isomorphic.
This isomorphism can be extended to an isomorphism between K and L by the
universal property of the algebraic closure.

Suppose that K and L are algebraically closed fields of the same characteristic. By
the Löwenheim-Skolem Theorem, there exist fields K ′ and L′ such that K ≡ K ′,
L ≡ L′ and |K ′| = |L′| = ℵ1. By the first part, K ′ ∼= L′. We conclude that
K ≡ K ′ ≡ L′ ≡ L.
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The Compactness Theorem

Theorem (Compactness Theorem)

Let L be a signature, Σ an L-theory. Suppose that every finite Σ0 ⊆ Σ has a model.
Then Σ has a model.

Example: let Lring = {+,−, ·, 0, 1}, ϕ an Lring-sentence such
that K |= ϕ whenever K is a field with charK = 0. Then
∃m ∈ N such that K |= ϕ whenever K is a field with
charK ≥ m.

The Löwenheim-Skolem Theorem and the Compactness
Theorem require (some form of) the Axiom of Choice to prove.
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The Ax-Grothendieck Theorem
Theorem (Ax-Grothendieck)

Let n ∈ N, V ⊆ Cn an algebraic set over C, f : V → V an injective rational map. Then f
is surjective.

Proof.

Consider for a field K the following property

for every n ∈ N and every algebraic set V ⊆ Kn, every injective rational map
f : V → V is surjective,

(1)

and observe the following:

Finite fields satisfy (1) by the Pigeon Hole Principle.

Algebraic extensions of finite fields satisfy (1): an algebraic set V , a polynomial
map f : V → V and an element x ∈ V are all defined over a finite subfield, so this
reduces to the previous case.
In particular, there exist algebraically closed fields of each positive characteristic p
satisfying (1).
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The Ax-Grothendieck Theorem

Proof.

Consider for a field K the following property

for every n ∈ N and every algebraic set V ⊆ Kn, every injective rational map
f : V → V is surjective,

and observe the following:

There exist algebraically closed fields of each positive characteristic p satisfying (1).

Property (1) is described by an Lring-theory Σ, i.e. a field satisfies (1) if and only if
it is a model of Σ.

By the Compactness Theorem, there exists an algebraically closed field K of
characteristic 0 satisfying (1).

Since K ≡ C, also C satisfies (1).
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Further reading

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University
Press, 1997.

[Tao09] Terrence Tao. Infinite fields, finite fields, and the
Ax-Grothendieck theorem.
https://terrytao.wordpress.com/2009/03/07/infinite-

fields-finite-fields-and-the-ax-grothendieck-

theorem/. Blog post. Mar. 2009.

Nicolas Daans
E-mail: nicolas.daans@uantwerpen.be

Office: M.G.223

19/19

https://terrytao.wordpress.com/2009/03/07/infinite-fields-finite-fields-and-the-ax-grothendieck-theorem/
https://terrytao.wordpress.com/2009/03/07/infinite-fields-finite-fields-and-the-ax-grothendieck-theorem/
https://terrytao.wordpress.com/2009/03/07/infinite-fields-finite-fields-and-the-ax-grothendieck-theorem/
nicolas.daans@uantwerpen.be

	Structures and first-order formulas
	Structures and signatures
	Morphisms, substructures, …
	A few caveats
	L-terms and L-sentences

	Comparing and constructing models
	Classifying structures
	The Löwenheim-Skolem Theorem
	The Compactness Theorem

	Application: the Ax-Grothendieck Theorem
	The Ax-Grothendieck Theorem

	References

