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Existential decidability and Hilbert’s 10th problem

Let Lring always denote the first-order language of rings
〈+,−, ·, 0, 1〉. All rings are unital and commutative.

Question 1.1 (Hilbert’s 10th Problem, 1900)

Is Th∃(Z) decidable?

Theorem 1.2 (Davis, Putnam, J. Robinson, Matiyasevich, 1970)

Th∃(Z) is undecidable.
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Existential decidability and Hilbert’s 10th problem

How to generalise to other rings R?

If Z is ∃Lring-definable in R, then Th∃(R) is undecidable.

More generally, if there is an “interpretation” of Th∃(Z) in
Th∃(R), then Th∃(R) is undecidable.

Question 1.3

Is Th∃(Q) decidable?

Question 1.4

Consider Lring({t}). Is Th∃(C(t)) decidable? Is Th(C(t))
decidable?
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∃-definability in Q

For a field K with char(K ) 6= 2 and a, b ∈ K×, define the 2-fold
Pfister form 〈〈a, b〉〉K as the quadratic form

W 2 − aX 2 − bY 2 + abZ 2.

For a quadratic form q over K , define the ramification set of q as
follows:

∆q = {v Z-valuation on K | qKv is anisotropic}.

Theorem 1.5 (Poonen, 2009)

There is an ∃Lring-formula ψ(x , a, b) such that for all a, b ∈ Q×
with a > 0

ψ(Q, a, b) =
⋂

v∈∆〈〈a,b〉〉Q

Ov .
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∃-definability in Q

Corollary 1.6 (Poonen)

There is an ∀∃Lring-formula ϕ(x) such that ϕ(Q) = Z. In
particular, Th∃∀∃(Q) is undecidable.

Theorem 1.7 (Koenigsmann, 2010)

There is an ∀Lring-formula ϕ(x) such that ϕ(Q) = Z. In particular,
Th∀∃(Q) is undecidable.

Theorem 1.8 (Koenigsmann, Park, Eisentraeger-Morrison, D.,
2010-2018-)

Let K be a global field, R a finitely generated subring of K with
K = Frac(R). There is an ∀Lring(K )-formula ϕ(x) such that
ϕ(K ) = R.
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∃-defining valuations in (rational) function fields

Theorem 1.9 (Denef, Pheidas, Videla, 1978-1994)

Let K be a field with prime subfield K0. Suppose that there is an
∃Lring({t})-formula ψ(x) such that for all x ∈ K (t) one has

1 (x ∈ K0(t) ∧ vt(x) > 0)⇒ K (t) |= ψ(x),

2 K (t) |= ψ(x)⇒ vt(x) > 0.

Then Th∃(K (t)) is undecidable.

In particular, Th∃(K (t)) is undecidable if the valuation ring at t is
existentially definable in K (t).

This has been used to show existential undecidability of:

K (t) where K is formally real (Denef, 1978),

Fq(t) (Pheidas, Videla, 1994),

K (t) where K is a subfield of Qp, p odd (Kim-Roush, 1995),

C(t1, t2) (Kim-Roush, 1992).
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∃-definability in function fields over global/local fields

Let K be a field, char(K ) 6= 2. For a, b, c ∈ K×, define the 3-fold
Pfister form 〈〈a, b, c〉〉K as the quadratic form

S2 − aT 2 − bU2 − cV 2 + abW 2 + acX 2 + bcY 2 − abcZ 2.

For a field K with char(K ) 6= 2, F/K a function field in one
variable over K , q a quadratic form defined over F , define

∆0q = {v ∈ ∆q | v(K×) = 0}.
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∃-definability in function fields over global/local fields

Theorem 1.10 (Dittmann, D., 2019-)

Let K be a local or global field, char(K ) 6= 2, F a function field in
one variable over K . There is an ∃Lring-formula ψ(x , a, b, c) such
that for all a, b, c ∈ F×

ψ(F , a, b, c) =
⋂

v∈∆0〈〈a,b,c〉〉F

Ov .
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∃-definability in function fields over global/local fields

Corollary 1.11

Let F = Qp(t) for some prime number p. The valuation ring

Ovt = {f ∈ F | vt(f ) ≥ 0}

has an ∃Lring({t})-definition in F .

Proof:
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∃-definability in function fields over global/local fields

Theorem 1.12 (Dittmann, D., 2020-)

Let K be a local or global field, char(K ) 6= 2, F/K a function field
in one variable. For a finitely generated, integrally closed
K -subalgebra R of F with Frac(R) = F , there is an
∀Lring(F )-formula ϕ(x) such that ϕ(F ) = R.
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Outline

Plan for today:

1 Quadratic forms, local-global principles and existential
definability

2 Interactions between valuations and quadratic forms in
function fields

3 Proof of Theorem 1.10 for function fields in one variable over
Qp.
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Quadratic splitting sets of quadratic forms

Let K be a field, char(K ) 6= 2, q a quadratic form over K . Define
the (quadratic) splitting set of q as

S(q) = {x ∈ K | qK [
√
x] is isotropic}.

Some immediate facts:

S(q) is existentially definable in K , uniformly in the
parameters defining q,

q is isotropic if and only if 1 ∈ S(q), if and only if S(q) = K ,

for a field extension L/K , S(q) ⊆ S(qL),

for a ∈ S(q) we have aK×2 ⊆ S(q),
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Quadratic splitting sets of quadratic forms

(local-global principle) for a collection E of field extensions of
K such that

∀x ∈ K : (qK [
√
x] anisotropic ⇒ ∃E ∈ E : qE [

√
x] anisotropic)

one has
S(q) =

⋂
E∈E

S(qE ) ∩ K .

E.g. If K is a global field, the Hasse-Minkowski Theorem states
that all quadratic forms over K satisfy the required local-global
principle if E is the set of completions of Z-valuations and real
closures.
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Kato’s local-global principle

From now on, K = Qp for some prime p, vp the p-adic valuation
on Qp, F/K a regular function field in one variable. For a
quadratic form q defined over F , define

∆pq = {v ∈ ∆q | v |K ∼ vp}.

Theorem 2.1 (Kato, 1986)

Let q be a 3-fold Pfister form defined over F . If ∆pq = ∅, then q
is isotropic over F .

In particular, we obtain for a 3-fold Pfister form q defined over F

S(q) =
⋂

v∈∆pq

S(qFv ).
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Kato’s local-global principle

Proposition 2.2

Let q be a 3-fold Pfister form over F , x ∈
⋂

v∈∆0q
Ov . Then there

exists n ∈ N such that pnx ∈
⋂

v∈∆pq
mv .

For each v ∈ ∆pq, one has pnx ∈ mv for n sufficiently high.
However, ∆pq is potentially infinite.
Proof sketch:

Using basic results on interactions between valuations and
quadratic forms, find a sentence φ in the first-order language
of valued fields such that for any valuation v on F ,
(F , v) |= φ implies ∃n ∈ N : pnx ∈ mv , and such that
(F , v) |= φ whenever v ∈ ∆pq.

By the Compactness Theorem, there exists an n ∈ N such
that pnx ∈ mv for all v ∈ ∆pq.
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Parametrised solution

Proposition 3.1

Let q be a 3-fold Pfister form defined over F . Let d ∈ S(q) \ {0}.
For x ∈ F one has

(∀v ∈ ∆0q : v(x2) ≥ v(d))⇔ (∃a ∈ K× : d + (ax)2 ∈ S(q)).

In particular, if additionally v(d) = 0 for all v ∈ ∆0q, then

x ∈
⋂

v∈∆0q

Ov ⇔ (∃a ∈ K× : d + (ax)2 ∈ S(q)).

As K is existentially definable in F , the property

∃a ∈ K× : d + (ax)2 ∈ S(q)

is equivalent in F to an existential formula ψ(x).
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Proof:
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Eliminating the parameter d

Proposition 3.2

Let q be a quadratic form over F of dimension at least 3. There
exists a d ∈ S(q) such that v(d) = 0 for all v ∈ ∆0q.

We have shown that there is an existential L-formula ϕ in 5
free variables such that for all a, b, c ∈ F× and a good choice
for d ∈ F× we have⋂

v∈∆0〈〈a,b,c〉〉

Ov = {x ∈ F× | F |= ϕ(x , a, b, c , d)}.

We would like to get rid of the need to choose an appropriate
d ∈ F× (this hinders universal quantification over the a, b, c).
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Eliminating the parameter d

Proposition 3.3

Let q be a three-fold Pfister form defined over F . Then

⋂
v∈∆0q

Ov =

{
x ∈ F

∣∣∣∣∣ ∃e ∈ S(q) \ {0, 1}, a ∈ K× :
e

(e−1)2 + (ax)2 ∈ S(q)

}
.

Proof:


	Existential definability and decidability
	Existential decidability and Hilbert's 10th problem
	-definability in Q
	-defining valuations in (rational) function fields
	-definability in function fields over global/local fields
	Outline

	Quadratic forms and valuations
	Quadratic splitting sets of quadratic forms
	Kato's local-global principle

	Proof of main theorem
	Parametrised solution
	Eliminating the parameter d


