Defining valuation and holomorphy rings in function fields using quadratic forms

Nicolas Daans (joint work with Philip Dittmann)

University of Antwerp

September 16, 2020

Proof of main theorem

Existential decidability and Hilbert's 10th problem

Let \mathcal{L}_{ring} always denote the first-order language of rings $\langle +, -, \cdot, 0, 1 \rangle$. All rings are unital and commutative.

Question 1.1 (Hilbert's 10th Problem, 1900)

Is $\mathsf{Th}_{\exists}(\mathbb{Z})$ decidable?

Let \mathcal{L}_{ring} always denote the first-order language of rings $\langle +, -, \cdot, 0, 1 \rangle$. All rings are unital and commutative.

Question 1.1 (Hilbert's 10th Problem, 1900)

Is $\mathsf{Th}_{\exists}(\mathbb{Z})$ decidable?

Theorem 1.2 (Davis, Putnam, J. Robinson, Matiyasevich, 1970)

 $\mathsf{Th}_{\exists}(\mathbb{Z})$ is undecidable.

 $\begin{array}{l} \textbf{Quadratic forms and valuations}\\ \texttt{OOOO} \end{array}$

Proof of main theorem

Existential decidability and Hilbert's 10th problem

How to generalise to other rings R?

How to generalise to other rings R?

• If \mathbb{Z} is $\exists \mathcal{L}_{ring}$ -definable in R, then $Th_{\exists}(R)$ is undecidable.

How to generalise to other rings R?

- If \mathbb{Z} is $\exists \mathcal{L}_{ring}$ -definable in R, then $Th_{\exists}(R)$ is undecidable.
- More generally, if there is an "interpretation" of $Th_{\exists}(\mathbb{Z})$ in $Th_{\exists}(R)$, then $Th_{\exists}(R)$ is undecidable.

How to generalise to other rings R?

- If \mathbb{Z} is $\exists \mathcal{L}_{ring}$ -definable in R, then $Th_{\exists}(R)$ is undecidable.
- More generally, if there is an "interpretation" of Th_∃(ℤ) in Th_∃(R), then Th_∃(R) is undecidable.

Question 1.3

Is $\mathsf{Th}_{\exists}(\mathbb{Q})$ decidable?

How to generalise to other rings R?

- If \mathbb{Z} is $\exists \mathcal{L}_{ring}$ -definable in R, then $Th_{\exists}(R)$ is undecidable.
- More generally, if there is an "interpretation" of Th_∃(ℤ) in Th_∃(R), then Th_∃(R) is undecidable.

Question 1.3

Is $\mathsf{Th}_{\exists}(\mathbb{Q})$ decidable?

Question 1.4

Consider $\mathcal{L}_{ring}(\{t\})$. Is $Th_{\exists}(\mathbb{C}(t))$ decidable?

How to generalise to other rings R?

- If \mathbb{Z} is $\exists \mathcal{L}_{ring}$ -definable in R, then $Th_{\exists}(R)$ is undecidable.
- More generally, if there is an "interpretation" of Th_∃(ℤ) in Th_∃(R), then Th_∃(R) is undecidable.

Question 1.3

Is $\mathsf{Th}_{\exists}(\mathbb{Q})$ decidable?

Question 1.4

Consider $\mathcal{L}_{ring}(\{t\})$. Is $Th_{\exists}(\mathbb{C}(t))$ decidable? Is $Th(\mathbb{C}(t))$ decidable?

Quadratic forms and valuations 0000

Proof of main theorem

\exists -definability in \mathbb{Q}

For a field K with char(K) $\neq 2$ and $a, b \in K^{\times}$, define the 2-fold Pfister form $\langle \langle a, b \rangle \rangle_{K}$ as the quadratic form

$$W^2 - aX^2 - bY^2 + abZ^2.$$

For a quadratic form q over K, define the *ramification set* of q as follows:

$$\Delta q = \{ v \ \mathbb{Z} \text{-valuation on } K \mid q_{K_v} \text{ is anisotropic} \}.$$

Quadratic forms and valuations $_{\rm OOOO}$

Proof of main theorem

\exists -definability in \mathbb{Q}

For a field K with $char(K) \neq 2$ and $a, b \in K^{\times}$, define the 2-fold Pfister form $\langle \langle a, b \rangle \rangle_{K}$ as the quadratic form

$$W^2 - aX^2 - bY^2 + abZ^2.$$

For a quadratic form q over K, define the *ramification set* of q as follows:

$$\Delta q = \{ v \ \mathbb{Z} \text{-valuation on } K \mid q_{K_v} \text{ is anisotropic} \}.$$

Theorem 1.5 (Poonen, 2009)

There is an $\exists \mathcal{L}_{ring}$ -formula $\psi(x, a, b)$ such that for all $a, b \in \mathbb{Q}^{\times}$ with a > 0

$$\psi(\mathbb{Q}, \mathsf{a}, b) = igcap_{\mathbf{v} \in \Delta \langle \langle \mathsf{a}, b
angle
angle_{\mathbb{Q}}} \mathcal{O}_{\mathbf{v}}$$

Quadratic forms and valuations 0000

Proof of main theorem

$\exists\text{-definability in }\mathbb{Q}$

Corollary 1.6 (Poonen)

There is an $\forall \exists \mathcal{L}_{ring}$ -formula $\varphi(x)$ such that $\varphi(\mathbb{Q}) = \mathbb{Z}$. In particular, $Th_{\exists \forall \exists}(\mathbb{Q})$ is undecidable.

Quadratic forms and valuations $_{\rm OOOO}$

Proof of main theorem

\exists -definability in \mathbb{Q}

Corollary 1.6 (Poonen)

There is an $\forall \exists \mathcal{L}_{ring}$ -formula $\varphi(x)$ such that $\varphi(\mathbb{Q}) = \mathbb{Z}$. In particular, $Th_{\exists \forall \exists}(\mathbb{Q})$ is undecidable.

Theorem 1.7 (Koenigsmann, 2010)

There is an $\forall \mathcal{L}_{ring}$ -formula $\varphi(x)$ such that $\varphi(\mathbb{Q}) = \mathbb{Z}$. In particular, $Th_{\forall \exists}(\mathbb{Q})$ is undecidable.

Quadratic forms and valuations

Proof of main theorem

\exists -definability in \mathbb{Q}

Corollary 1.6 (Poonen)

There is an $\forall \exists \mathcal{L}_{ring}$ -formula $\varphi(x)$ such that $\varphi(\mathbb{Q}) = \mathbb{Z}$. In particular, $Th_{\exists \forall \exists}(\mathbb{Q})$ is undecidable.

Theorem 1.7 (Koenigsmann, 2010)

There is an $\forall \mathcal{L}_{ring}$ -formula $\varphi(x)$ such that $\varphi(\mathbb{Q}) = \mathbb{Z}$. In particular, $Th_{\forall \exists}(\mathbb{Q})$ is undecidable.

Theorem 1.8 (Koenigsmann, Park, Eisentraeger-Morrison, D., 2010-2018-)

Let K be a global field, R a finitely generated subring of K with K = Frac(R). There is an $\forall \mathcal{L}_{ring}(K)$ -formula $\varphi(x)$ such that $\varphi(K) = R$.

Theorem 1.9 (Denef, Pheidas, Videla, 1978-1994)

Let K be a field with prime subfield K₀. Suppose that there is an $\exists \mathcal{L}_{ring}(\{t\})$ -formula $\psi(x)$ such that for all $x \in K(t)$ one has

$$K(t) \models \psi(x) \Rightarrow v_t(x) > 0$$

Then $\operatorname{Th}_{\exists}(K(t))$ is undecidable.

In particular, $Th_{\exists}(K(t))$ is undecidable if the valuation ring at t is existentially definable in K(t).

Theorem 1.9 (Denef, Pheidas, Videla, 1978-1994)

Let K be a field with prime subfield K₀. Suppose that there is an $\exists \mathcal{L}_{ring}(\{t\})$ -formula $\psi(x)$ such that for all $x \in K(t)$ one has

$$K(t) \models \psi(x) \Rightarrow v_t(x) > 0.$$

Then $Th_{\exists}(K(t))$ is undecidable.

In particular, $Th_{\exists}(K(t))$ is undecidable if the valuation ring at t is existentially definable in K(t).

This has been used to show existential undecidability of:

• K(t) where K is formally real (Denef, 1978),

Theorem 1.9 (Denef, Pheidas, Videla, 1978-1994)

Let K be a field with prime subfield K₀. Suppose that there is an $\exists \mathcal{L}_{ring}(\{t\})$ -formula $\psi(x)$ such that for all $x \in K(t)$ one has

Then $Th_{\exists}(K(t))$ is undecidable.

In particular, $Th_{\exists}(K(t))$ is undecidable if the valuation ring at t is existentially definable in K(t).

This has been used to show existential undecidability of:

- K(t) where K is formally real (Denef, 1978),
- $\mathbb{F}_q(t)$ (Pheidas, Videla, 1994),

Theorem 1.9 (Denef, Pheidas, Videla, 1978-1994)

Let K be a field with prime subfield K₀. Suppose that there is an $\exists \mathcal{L}_{ring}(\{t\})$ -formula $\psi(x)$ such that for all $x \in K(t)$ one has

Then $Th_{\exists}(K(t))$ is undecidable.

In particular, $Th_{\exists}(K(t))$ is undecidable if the valuation ring at t is existentially definable in K(t).

This has been used to show existential undecidability of:

- K(t) where K is formally real (Denef, 1978),
- $\mathbb{F}_q(t)$ (Pheidas, Videla, 1994),
- K(t) where K is a subfield of \mathbb{Q}_p , p odd (Kim-Roush, 1995),

Theorem 1.9 (Denef, Pheidas, Videla, 1978-1994)

Let K be a field with prime subfield K₀. Suppose that there is an $\exists \mathcal{L}_{ring}(\{t\})$ -formula $\psi(x)$ such that for all $x \in K(t)$ one has

Then $Th_{\exists}(K(t))$ is undecidable.

In particular, $Th_{\exists}(K(t))$ is undecidable if the valuation ring at t is existentially definable in K(t).

This has been used to show existential undecidability of:

- K(t) where K is formally real (Denef, 1978),
- $\mathbb{F}_q(t)$ (Pheidas, Videla, 1994),
- K(t) where K is a subfield of \mathbb{Q}_p , p odd (Kim-Roush, 1995),
- $\mathbb{C}(t_1, t_2)$ (Kim-Roush, 1992).

∃-definability in function fields over global/local fields

Let K be a field, $\operatorname{char}(K) \neq 2$. For $a, b, c \in K^{\times}$, define the 3-fold Pfister form $\langle \langle a, b, c \rangle \rangle_{K}$ as the quadratic form

$$S^{2} - aT^{2} - bU^{2} - cV^{2} + abW^{2} + acX^{2} + bcY^{2} - abcZ^{2}$$
.

∃-definability in function fields over global/local fields

Let K be a field, $char(K) \neq 2$. For $a, b, c \in K^{\times}$, define the 3-fold *Pfister form* $\langle \langle a, b, c \rangle \rangle_{K}$ as the quadratic form

$$S^{2} - aT^{2} - bU^{2} - cV^{2} + abW^{2} + acX^{2} + bcY^{2} - abcZ^{2}$$
.

For a field K with $char(K) \neq 2$, F/K a function field in one variable over K, q a quadratic form defined over F, define

$$\Delta_0 q = \{ v \in \Delta q \mid v(K^{ imes}) = 0 \}.$$

 $\begin{array}{l} \textbf{Quadratic forms and valuations}\\ \texttt{0000} \end{array}$

Proof of main theorem

\exists -definability in function fields over global/local fields

Theorem 1.10 (Dittmann, D., 2019-)

Let K be a local or global field, $char(K) \neq 2$, F a function field in one variable over K. There is an $\exists \mathcal{L}_{ring}$ -formula $\psi(x, a, b, c)$ such that for all $a, b, c \in F^{\times}$

$$\psi(\mathsf{F},\mathsf{a},\mathsf{b},\mathsf{c}) = igcap_{\mathsf{v}\in\Delta_0\langle\langle\mathsf{a},\mathsf{b},\mathsf{c}
angle
angle_{\mathsf{F}}} \mathcal{O}_{\mathsf{v}}.$$

 $\begin{array}{l} \textbf{Quadratic forms and valuations}\\ \texttt{0000} \end{array}$

Proof of main theorem

∃-definability in function fields over global/local fields

Corollary 1.11

Let $F = \mathbb{Q}_p(t)$ for some prime number p. The valuation ring

$$\mathcal{O}_{v_t} = \{f \in F \mid v_t(f) \ge 0\}$$

has an $\exists \mathcal{L}_{ring}(\{t\})$ -definition in F.

Proof:

Quadratic forms and valuations $_{\rm OOOO}$

Proof of main theorem

\exists -definability in function fields over global/local fields

Theorem 1.12 (Dittmann, D., 2020-)

Let K be a local or global field, $char(K) \neq 2$, F/K a function field in one variable. For a finitely generated, integrally closed K-subalgebra R of F with Frac(R) = F, there is an $\forall \mathcal{L}_{ring}(F)$ -formula $\varphi(x)$ such that $\varphi(F) = R$.

Outline

Quadratic forms and valuations $_{\rm OOOO}$

Proof of main theorem

Plan for today:

• Proof of Theorem 1.10 for function fields in one variable over \mathbb{Q}_{p} .

 $\begin{array}{l} \textbf{Quadratic forms and valuations}\\ \texttt{0000} \end{array}$

Proof of main theorem

Outline

Plan for today:

Quadratic forms, local-global principles and existential definability

• Proof of Theorem 1.10 for function fields in one variable over \mathbb{Q}_{p} .

Outline

Plan for today:

- Quadratic forms, local-global principles and existential definability
- Interactions between valuations and quadratic forms in function fields
- Proof of Theorem 1.10 for function fields in one variable over \mathbb{Q}_{p} .

Let K be a field, $char(K) \neq 2$, q a quadratic form over K. Define the (quadratic) splitting set of q as

 $S(q) = \{x \in K \mid q_{K[\sqrt{x}]} \text{ is isotropic}\}.$

Let K be a field, $char(K) \neq 2$, q a quadratic form over K. Define the (quadratic) splitting set of q as

$$S(q) = \{x \in K \mid q_{K[\sqrt{x}]} \text{ is isotropic}\}.$$

Some immediate facts:

• *S*(*q*) is existentially definable in *K*, uniformly in the parameters defining *q*,

Let K be a field, $char(K) \neq 2$, q a quadratic form over K. Define the (quadratic) splitting set of q as

$$S(q) = \{x \in K \mid q_{K[\sqrt{x}]} \text{ is isotropic}\}.$$

Some immediate facts:

- *S*(*q*) is existentially definable in *K*, uniformly in the parameters defining *q*,
- q is isotropic if and only if $1 \in S(q)$, if and only if S(q) = K,

Let K be a field, $char(K) \neq 2$, q a quadratic form over K. Define the (quadratic) splitting set of q as

$$\mathcal{S}(q) = \{x \in \mathcal{K} \mid q_{\mathcal{K}[\sqrt{x}]} ext{ is isotropic} \}.$$

Some immediate facts:

- *S*(*q*) is existentially definable in *K*, uniformly in the parameters defining *q*,
- q is isotropic if and only if $1 \in S(q)$, if and only if S(q) = K,
- for a field extension L/K, $S(q) \subseteq S(q_L)$,

Let K be a field, $char(K) \neq 2$, q a quadratic form over K. Define the (quadratic) splitting set of q as

$$\mathcal{S}(q) = \{x \in \mathcal{K} \mid q_{\mathcal{K}[\sqrt{x}]} ext{ is isotropic} \}.$$

Some immediate facts:

- *S*(*q*) is existentially definable in *K*, uniformly in the parameters defining *q*,
- q is isotropic if and only if $1 \in S(q)$, if and only if S(q) = K,
- for a field extension L/K, $S(q) \subseteq S(q_L)$,
- for $a \in S(q)$ we have $aK^{ imes 2} \subseteq S(q)$,

Quadratic splitting sets of quadratic forms

• *(local-global principle)* for a collection \mathcal{E} of field extensions of K such that

$$\forall x \in \mathcal{K} : (q_{\mathcal{K}[\sqrt{x}]} \text{ anisotropic } \Rightarrow \exists E \in \mathcal{E} : q_{E[\sqrt{x}]} \text{ anisotropic})$$

one has

$$S(q) = igcap_{E\in\mathcal{E}} S(q_E) \cap K.$$

Quadratic splitting sets of quadratic forms

• (*local-global principle*) for a collection \mathcal{E} of field extensions of K such that

$$\forall x \in \mathcal{K} : (q_{\mathcal{K}[\sqrt{x}]} \text{ anisotropic } \Rightarrow \exists E \in \mathcal{E} : q_{E[\sqrt{x}]} \text{ anisotropic})$$

one has

$$S(q) = \bigcap_{E \in \mathcal{E}} S(q_E) \cap K.$$

E.g. If *K* is a global field, the Hasse-Minkowski Theorem states that all quadratic forms over *K* satisfy the required local-global principle if \mathcal{E} is the set of completions of \mathbb{Z} -valuations and real closures.

Quadratic forms and valuations $\circ \circ \bullet \circ$

Proof of main theorem

Kato's local-global principle

From now on, $K = \mathbb{Q}_p$ for some prime p, v_p the p-adic valuation on \mathbb{Q}_p , F/K a regular function field in one variable. For a quadratic form q defined over F, define

$$\Delta_p q = \{ v \in \Delta q \mid v|_K \sim v_p \}.$$

Quadratic forms and valuations $\circ \circ \bullet \circ$

Proof of main theorem

Kato's local-global principle

From now on, $K = \mathbb{Q}_p$ for some prime p, v_p the p-adic valuation on \mathbb{Q}_p , F/K a regular function field in one variable. For a quadratic form q defined over F, define

$$\Delta_p q = \{ v \in \Delta q \mid v|_K \sim v_p \}.$$

Theorem 2.1 (Kato, 1986)

Let q be a 3-fold Pfister form defined over F. If $\Delta_p q = \emptyset$, then q is isotropic over F.

Quadratic forms and valuations $\circ \circ \bullet \circ$

Proof of main theorem

Kato's local-global principle

From now on, $K = \mathbb{Q}_p$ for some prime p, v_p the p-adic valuation on \mathbb{Q}_p , F/K a regular function field in one variable. For a quadratic form q defined over F, define

$$\Delta_p q = \{ v \in \Delta q \mid v|_K \sim v_p \}.$$

Theorem 2.1 (Kato, 1986)

Let q be a 3-fold Pfister form defined over F. If $\Delta_p q = \emptyset$, then q is isotropic over F.

In particular, we obtain for a 3-fold Pfister form q defined over F

$$S(q) = \bigcap_{v \in \Delta_p q} S(q_{F_v}).$$

Quadratic forms and valuations $\circ \circ \circ \bullet$

Proof of main theorem

Kato's local-global principle

Proposition 2.2

Let q be a 3-fold Pfister form over F, $x \in \bigcap_{v \in \Delta_0 q} \mathcal{O}_v$. Then there exists $n \in \mathbb{N}$ such that $p^n x \in \bigcap_{v \in \Delta_p q} \mathfrak{m}_v$.

Quadratic forms and valuations $\circ\circ\circ\bullet$

Proof of main theorem

Kato's local-global principle

Proposition 2.2

Let q be a 3-fold Pfister form over F, $x \in \bigcap_{v \in \Delta_0 q} \mathcal{O}_v$. Then there exists $n \in \mathbb{N}$ such that $p^n x \in \bigcap_{v \in \Delta_p q} \mathfrak{m}_v$.

For each $v \in \Delta_p q$, one has $p^n x \in \mathfrak{m}_v$ for *n* sufficiently high. However, $\Delta_p q$ is potentially infinite.

Quadratic forms and valuations $\circ \circ \circ \bullet$

Proof of main theorem

Kato's local-global principle

Proposition 2.2

Let q be a 3-fold Pfister form over F, $x \in \bigcap_{v \in \Delta_0 q} \mathcal{O}_v$. Then there exists $n \in \mathbb{N}$ such that $p^n x \in \bigcap_{v \in \Delta_p q} \mathfrak{m}_v$.

For each $v \in \Delta_p q$, one has $p^n x \in \mathfrak{m}_v$ for *n* sufficiently high. However, $\Delta_p q$ is potentially infinite.

Proof sketch:

Using basic results on interactions between valuations and quadratic forms, find a sentence φ in the first-order language of valued fields such that for any valuation v on F,
 (F, v) ⊨ φ implies ∃n ∈ ℕ : pⁿx ∈ m_v, and such that
 (F, v) ⊨ φ whenever v ∈ Δ_pq.

Quadratic forms and valuations $\circ \circ \circ \bullet$

Proof of main theorem

Kato's local-global principle

Proposition 2.2

Let q be a 3-fold Pfister form over F, $x \in \bigcap_{v \in \Delta_0 q} \mathcal{O}_v$. Then there exists $n \in \mathbb{N}$ such that $p^n x \in \bigcap_{v \in \Delta_p q} \mathfrak{m}_v$.

For each $v \in \Delta_p q$, one has $p^n x \in \mathfrak{m}_v$ for *n* sufficiently high. However, $\Delta_p q$ is potentially infinite.

Proof sketch:

- Using basic results on interactions between valuations and quadratic forms, find a sentence φ in the first-order language of valued fields such that for any valuation v on F,
 (F, v) ⊨ φ implies ∃n ∈ ℕ : pⁿx ∈ m_v, and such that
 (F, v) ⊨ φ whenever v ∈ Δ_pq.
- By the Compactness Theorem, there exists an n ∈ N such that pⁿx ∈ m_v for all v ∈ Δ_pq.

Quadratic forms and valuations 0000

Proof of main theorem

Parametrised solution

Proposition 3.1

Let q be a 3-fold Pfister form defined over F. Let $d \in S(q) \setminus \{0\}$. For $x \in F$ one has

$$(orall v \in \Delta_0 q : v(x^2) \geq v(d)) \Leftrightarrow (\exists a \in \mathcal{K}^{ imes} : d + (ax)^2 \in S(q)).$$

In particular, if additionally v(d) = 0 for all $v \in \Delta_0 q$, then

$$x\in igcap_{
u\in\Delta_0 q}\mathcal{O}_
u \Leftrightarrow (\exists a\in\mathcal{K}^ imes:d+(ax)^2\in S(q)).$$

Quadratic forms and valuations

Proof of main theorem

Parametrised solution

Proposition 3.1

Let q be a 3-fold Pfister form defined over F. Let $d \in S(q) \setminus \{0\}$. For $x \in F$ one has

$$(orall v \in \Delta_0 q : v(x^2) \geq v(d)) \Leftrightarrow (\exists a \in \mathcal{K}^{ imes} : d + (ax)^2 \in S(q)).$$

In particular, if additionally v(d) = 0 for all $v \in \Delta_0 q$, then

$$x\in igcap_{
u\in\Delta_0 q}\mathcal{O}_
u \Leftrightarrow (\exists a\in \mathcal{K}^ imes:d+(ax)^2\in S(q)).$$

As K is existentially definable in F, the property

$$\exists a \in K^{\times} : d + (ax)^2 \in S(q)$$

is equivalent in F to an existential formula $\psi(x)$.

Quadratic forms and valuations 0000

Proof of main theorem $0 \bullet 00$

Parametrised solution

Proof:

Quadratic forms and valuations

Proof of main theorem $\circ \circ \bullet \circ$

Eliminating the parameter d

Proposition 3.2

Let q be a quadratic form over F of dimension at least 3. There exists a $d \in S(q)$ such that v(d) = 0 for all $v \in \Delta_0 q$.

Quadratic forms and valuations $_{\rm OOOO}$

Proof of main theorem

Eliminating the parameter d

Proposition 3.2

Let q be a quadratic form over F of dimension at least 3. There exists a $d \in S(q)$ such that v(d) = 0 for all $v \in \Delta_0 q$.

We have shown that there is an existential *L*-formula φ in 5 free variables such that for all a, b, c ∈ F[×] and a good choice for d ∈ F[×] we have

$$\bigcap_{\nu \in \Delta_0 \langle \langle a, b, c \rangle \rangle} \mathcal{O}_{\nu} = \{ x \in F^{\times} \mid F \models \varphi(x, a, b, c, d) \}.$$

Quadratic forms and valuations 0000

Proof of main theorem

Eliminating the parameter d

Proposition 3.2

Let q be a quadratic form over F of dimension at least 3. There exists a $d \in S(q)$ such that v(d) = 0 for all $v \in \Delta_0 q$.

We have shown that there is an existential *L*-formula φ in 5 free variables such that for all a, b, c ∈ F[×] and a good choice for d ∈ F[×] we have

$$\bigcap_{\nu \in \Delta_0 \langle \langle a, b, c \rangle \rangle} \mathcal{O}_{\nu} = \{ x \in F^{\times} \mid F \models \varphi(x, a, b, c, d) \}.$$

 We would like to get rid of the need to choose an appropriate *d* ∈ *F*[×] (this hinders universal quantification over the *a*, *b*, *c*).

Quadratic forms and valuations 0000

Proof of main theorem

Eliminating the parameter d

Proposition 3.3

Let q be a three-fold Pfister form defined over F. Then

$$\bigcap_{\nu \in \Delta_0 q} \mathcal{O}_{\nu} = \left\{ x \in F \ \left| \begin{array}{c} \exists e \in S(q) \setminus \{0,1\}, a \in K^{\times} : \\ \frac{e}{(e-1)^2} + (ax)^2 \in S(q) \end{array} \right\} \right.$$

Proof: