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2 NICOLAS DAANS

Notations and conventions. We denote by N the set of natural numbers. We
write N+ for the proper subset of non-zero numbers. For a ring R, we denote by
R× the set of invertible elements of R; if R is a field, then R× = R \ {0}.

Acknowledgements. The course follows to a large extent the exposition from
Lam’s book [Lam05]. For this introductory course, we focus on fields of charac-
teristic different from 2, where the theory of quadratic forms is simpler than over
fields of characteristic 2. The book of Elman, Karpenko and Merkurjev [EKM08]
is a great reference for those who want to learn more about quadratic form the-
ory over fields of arbitrary characteristic, and some parts of this course which
hold in arbitrary characteristic, are inspired by their work. Finally, I gratefully
acknowledge the inspiration taken from the course “Quadratic Forms” taught by
Karim Johannes Becher at the University of Antwerp in Belgium, which has to
a large extent shaped my vision on modern quadratic form theory.

1. Lecture 1

1.1. Bilinear and quadratic forms. Let always K be a field, n ∈ N.

1.1.1. Definition. A symmetric bilinear space over K is a pair (V,B) where

• V is a finite-dimensional vector space over K, and
• B : V × V → K is a symmetric and bilinear map, i.e. for all x, x′, y ∈ V

and a ∈ K we have

B(x, y) = B(y, x),

B(x+ x′, y) = B(x, y) +B(x′, y),

B(ax, y) = aB(x, y).

We call the map B a symmetric bilinear form on V . We define the dimension of
(V,B) to be the dimension of V , and denote this by dim(V,B) or simply dimB.

Let n = dim(V,B). Given a basis B = (e1, . . . , en) of V , we define MB(B) =
[B(ej, ei)]

n
i,j=1, which we call the matrix of (V,B) with respect to B.

1.1.2. Proposition. Let V = Kn and let B = (e1, . . . , en) be the canonical basis.
Let B be a symmetric bilinear form on V . For column vectors x = [x1 . . . xn]T

and y = [y1, . . . , yn]T we have

B(x, y) = xTMB(B)y.

Proof. This is clear from the bilinearity of B. �

1.1.3. Definition. A quadratic space over K is a pair (V, q) where

• V is a finite-dimensional vector space over K, and
• q : V → K is a map satisfying the following:

(1) ∀a ∈ K, ∀x ∈ V : q(ax) = a2q(x),
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(2) the map

bq : V × V → K : (x, y) 7→ q(x+ y)− q(x)− q(y)

is a symmetric bilinear form on V .

We call the map q a quadratic form on V , and bq its polar form. We define the
dimension of (V, q) to be the dimension of V , and denote this by dim(V, q) or
simply dim q.

1.1.4. Definition. Let (V,B) and (V ′, B′) be symmetric bilinear spaces over
K. An isomorphism of K-vector spaces I : V → V ′ is called an isometry be-
tween (V,B) and (V ′, B′) if, for all v, w ∈ V , one has B(v, w) = B′(I(v), I(w)).
Similarly, given quadratic spaces (V, q) and (V ′, q′) over K, an isomorphism of
K-vector spaces I : V → V ′ is called an isometry between (V, q) and (V ′, q′) if,
for all v ∈ V , one has q(v) = q′(I(v)).

We call two symmetric bilinear spaces (V,B) and (V,B′) (respectively two
quadratic spaces (V, q) and (V ′, q′)) isometric, which we denote by (V,B) ∼=
(V ′, B′) (respectively (V, q) ∼= (V ′, q′)) if there exists an isometry between them.

Traditionally, a quadratic form over K is often defined to be a homogeneous
polynomial of degree 2 over K. Definition 1.1.3 can be seen as a coordinate-free
version of this, as the following proposition indicates.

1.1.5. Proposition. Let n ∈ N and let f ∈ K[X1, . . . , Xn] be a homogeneous
polynomial of degree 2. The map

qf : Kn → K : (x1, . . . , xn) 7→ f(x1, . . . , xn)

is a quadratic form on Kn.
Conversely, given a quadratic space (V, q) of dimension n, there exists a ho-

mogeneous degree 2 polynomial f ∈ K[X1, . . . , Xn] such that (V, q) is isometric
to (Kn, qf ).

Proof. For the first part of the statement, one verifies that the defined map sat-
isfies the conditions stated in Definition 1.1.3.

The second part of the statement is left as an exercise. �

1.1.6. Proposition. Let f, g ∈ K[X1, . . . , Xn] be homogeneous polynomials of
degree 2. The quadratic spaces (Kn, qf ) and (Kn, qg) are isometric if and only if
there exists C ∈ GLn(K) such that

f
(

[x1 . . . xn]T
)

= g
(
([x1 . . . xn]C)T

)
for all x1, . . . , xn ∈ K.

Proof. Exercise. �
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1.1.7. Example. Suppose char(K) 6= 2. Let f(X1, X2) = X1 ·X2 and g(X1, X2) =
X2

1 −X2
2 . We observe that

g

(
X1 +X2

2
,
X1 −X2

2

)
= f(X1, X2)

and thus, in view of Proposition 1.1.6, that (K2, qf ) ∼= (K2, qg), with

C =

[
1
2

1
2

1
2
−1
2

]
.

We saw that, to a quadratic form q, one can associate a symmetric bilinear
form bq on the same space. It is also possible to obtain a quadratic form from a
symmetric bilinear form: if (V,B) is a symmetric bilinear space, then

qB : V → K : v 7→ B(v, v)

is easily seen to be a quadratic form. If char(K) 6= 2, then these two operations
are each others inverses (up to scaling by 1

2
), and hence the studies of quadratic

and symmetric bilinear forms over K are essentially the same:

1.1.8. Proposition. Assume char(K) 6= 2. Let (V, q) be a quadratic space. Then
q is equal to the quadratic form associated to the form 1

2
bq. Conversely, if (V,B)

is a symmetric bilinear space, then B is equal to 1
2
bq where q = qB.

Proof. This is a straightforward computation. �

Over fields of characteristic 2, one can still associate to each quadratic form a
symmetric bilinear form and to each symmetric bilinear form a quadratic form
as before, but these operations are not invertible. In fact, one needs to make an
entirely separate study of quadratic and symmetric bilinear forms! We refer the
interested reader to [EKM08, Chapters I and II].

We now go on to study basic properties of quadratic forms.

1.1.9. Definition. Let (V, q) be a quadratic space over K.

• We call q isotropic if there exists v ∈ V \ {0} such that q(v) = 0, or
anisotropic otherwise.
• Given a ∈ K×, we say that q represents a if ∃v ∈ V with a = q(v). We

write

DK(q) = {a ∈ K× | ∃v ∈ V : a = q(v)}.
If DK(q) = K×, we say that q is universal .

1.1.10. Examples.

(1) Let f(X1, X2) = X1 ·X2. Then qf is isotropic, since f(1, 0) = 0. qf is also
universal, since, f(1, a) = a for any a ∈ K×.

(2) Let f(X1, X2) = X2
1 +X2

2 . qf is isotropic if and only if −1 is a square in
K. DK(qf ) is the set of elements of K which are a sum of two squares.
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(3) Let f(X1, X2) = (X1 + X2)
2. Then qf is isotropic since f(1,−1) = 0.

DK(qf ) consists of those elements of K which are squares.

The last example is somewhat peculiar: the quadratic form qf with f(X1, X2) =
(X1 +X2)

2 is of dimension 2, but after a base change, one of the variables disap-
pears. Indeed,

f (X1 −X2, X2) = X2
1 .

We will often want to exclude from our study quadratic forms which have this
property.

For a K-vector space V , we denote by V ∗ the dual space, i.e. the space of linear
maps V → K. Recall that dim(V ∗) = dim(V ).

1.1.11. Proposition. Let (V,B) be a symmetric bilinear space. Let B be a basis
for V . The following are equivalent.

(a) ∀v ∈ V \ {0}, ∃w ∈ V : B(v, w) 6= 0,
(b) The map V → V ∗ : v 7→ (w 7→ B(v, w)) is a K-isomorphism.
(c) The matrix MB(B) is invertible.

Proof. Exercise. �

1.1.12. Definition. We call a symmetric bilinear space (V,B) nonsingular if the
above equivalent conditions hold. We call a quadratic space (V, q) nonsingular if
its polar form is nonsingular. Otherwise, we call the space singular. We use the
same terminology for the symmetric bilinear and quadratic forms themselves.

We now show that, at least over fields of characteristic not 2, singular forms
are precisely those for which, after a base change, one of the variables disappears.

1.1.13. Proposition. Let (V, q) be a quadratic space over K and v ∈ V . Consider
the statements

(a) bq(v, w) = 0 for all w ∈ V ,
(b) for all w ∈ V we have q(w + v) = q(w).

We have that (b) ⇒ (a) in general. If char(K) 6= 2, then (a) and (b) are
equivalent.

In particular, it follows that, if char(K) 6= 2, a quadratic space (V, q) is singular
if and only if there exists v ∈ V \ {0} such that for all w ∈ V we have q(w+ v) =
q(w).

Proof. If (b) holds, then q(v) = q(v + 0) = q(0) = 0, whence for any w ∈ V we
have bq(v, w) = q(v + w)− q(v)− q(w) = 0.

Now assume that char(K) 6= 2 and (a) holds. Then in particular 0 = bq(v, v) =
2q(v) and thus q(v) = 0. It follows that, for any w ∈ V , we have q(v + w) =
q(v) + q(w) + bq(v, w) = q(v), so (b) holds. �

If char(K) 6= 2, a nonsingular quadratic form over K is also called regular or
nondegenerate. Note that, if char(K) = 2, these terms have more specialised,
distinct meanings.
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1.1.14. Remark. So far, I have been somewhat careful in making the distinction be-
tween a symmetric bilinear/quadratic space and a symmetric bilinear/quadratic
form. This makes notation and speaking somewhat heavy. I will in the future of-
ten simply refer to the forms themselves, taking the convention that a symmetric
bilinear/quadratic space ‘knows’ its domain.

1.2. Orthogonality and diagonalisation.

1.2.1. Definition. Let (V,B) be a symmetric bilinear space. Let v, w ∈ V . We
say that v and w are orthogonal (with respect to B) if B(v, w) = 0. We write
v ⊥ w.

Let v ∈ V and M ⊆ V . We say that v is orthogonal to M (with respect to B)
if B(v, w) = 0 for all w ∈M . We write v ⊥M . Similarly, given M ′ ⊆ V , we say
that M is orthogonal to M ′ (with respect to B) if B(v, w) = 0 for all v ∈M and
w ∈M ′, and write M ⊥M ′.

We write

M⊥ = {v ∈ V | ∀w ∈M : B(v, w) = 0}
and call it the orthogonal space of M - note that it is always a subspace of V .
We write v⊥ instead of {v}⊥.

If U ⊆ V is a subspace and V = U⊕U⊥, we call U⊥ an orthogonal complement
of U in V .

Observe that a symmetric bilinear space (V,B) is by definition nonsingular if
and only if V ⊥ = {0}.

1.2.2. Proposition. Let (V,B) be nonsingular, U ⊆ V a subspace. Then

dimU + dimU⊥ = dimV and (U⊥)⊥ = U.

Proof. Consider the K-linear maps

ϕ1 : U⊥ → V ∗ : v 7→ (w 7→ B(v, w))

ϕ2 : V ∗ → U∗ : f 7→ f |U .

We observe that ϕ1 is injective by the nonsingularity of (V,B), that ϕ2 is surjec-
tive, and that the image of ϕ1 is precisely the kernel of ϕ2 by definition of U⊥.
As such, we compute that

dimV = dimV ∗ = dim(Kerϕ2) + dim(Imϕ2)

= dim(Imϕ1) + dimU∗ = dim(U⊥) + dim(U)

as desired.
For the second statement, observe that we trivially have U ⊆ (U⊥)⊥, but that,

by the first claim, dim(U) = dim((U⊥)⊥), whence U = (U⊥)⊥ as desired. �

We now define an operation on the set of quadratic spaces over K.
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1.2.3. Proposition. Let (V1, q1) and (V2, q2) be quadratic spaces over K. Let
V = V1 × V2 and consider the map

q : V → K : (x, y) 7→ q1(x) + q2(y).

Furthermore, consider the natural embeddings ι1 : V1 → V : x 7→ (x, 0) and
ι2 : V2 → V : x 7→ (0, x). We have that (V, q) is a quadratic space, and q is
nonsingular if and only if both q1 and q2 are. Furthermore, i1(V1) ⊥ i2(V2) with
respect to bq.

Proof. Easy verification. �

1.2.4. Definition. Let (V1, q1) and (V2, q2) be quadratic spaces over K. We call
the space (V, q) defined in Proposition 1.2.3 the orthogonal sum of (V1, q1) and
(V2, q2) and we denote the form q by q1 ⊥ q2.

1.2.5. Proposition. Let (Vi, qi) and (V ′i , q
′
i) be quadratic spaces for i = 1, 2, 3.

We have the following computation rules:

• dim(q1 ⊥ q2) = dim(q1) + dim(q2).
• q1 ⊥ q2 ∼= q2 ⊥ q1, and q1 ⊥ (q2 ⊥ q3) ∼= (q1 ⊥ q2) ⊥ q3.
• If q1 ∼= q′1 and q2 ∼= q′2, then q1 ⊥ q′1

∼= q2 ⊥ q′2.

Proof. Easy verifications. �

1.2.6. Proposition. Let (V, q), (V1, q1) and (V2, q2) be quadratic spaces over K.
Then q ∼= q1 ⊥ q2 if and only if there are K-subspaces W1 and W2 of V with
W1 ⊥ W2 with respect to bq, V = W1 ⊕W2, and such that (Wi, q|Wi

) ∼= (Vi, qi)
for i = 1, 2.

Proof. Suppose that ι is an isomorphism q1 ⊥ q2 → q and let W1 and W2 be the
images under this isomorphism of V1×{0} and {0}×V2 respectively. One verifies
easily that these are as desired.

Conversely, assume that W1 and W2 are subspaces of V with W1 ⊥ W2,
V = W1 ⊕ W2, and such that (Wi, q|Wi

) ∼= (Vi, qi) for i = 1, 2. Without loss
of generality, we may assume that Vi = Wi and qi = q|Wi

. Let ι be the unique
K-linear map V → V1 × V2 which maps a vector w ∈ W1 to (w, 0) and a vector
w ∈ W2 to (0, w). Clearly this is an isomorphism of K-vector spaces. Consider an
arbitrary vector in V , which we may write as w1 +w2 for w1 ∈ W1 and w2 ∈ W2.
Since W1 ⊥ W2, we have that bq(w1, w2) = 0. We compute that

q(w1 + w2) = q(w1) + q(w2) + bq(w1, w2) = q(w1) + q(w2)

= q1(w1) + q2(w2) = (q1 ⊥ q2)(w1, w2) = (q1 ⊥ q2)(ι(w1 + w2)).

Hence ι is the desired isometry. �

We now discuss a special class of quadratic forms called diagonal forms. As it
will turn out, in characteristic different from 2, every quadratic form is isometric
to a diagonal form (see Corollary 1.2.10).



8 NICOLAS DAANS

1.2.7. Definition. Let a1, . . . , an ∈ K. We denote by 〈a1, . . . , an〉K the quadratic
form

Kn → K : (x1, . . . , xn) 7→
n∑
i=1

aix
2
i .

We call such a form a diagonal form. If the field K is clear from the context we
might simply write 〈a1, . . . , an〉 instead of 〈a1, . . . , an〉K .

Note that 〈a1, . . . , an〉K ∼= 〈a1〉K ⊥ . . . ⊥ 〈an〉K .

1.2.8. Proposition. Let n ∈ N and a1, . . . , an ∈ K, let q = 〈a1, . . . , an〉. If
char(K) 6= 2, then q is singular if and only if ai = 0 for some i ∈ {1, . . . , n〉. If
char(K) = 2, then q is singular as soon as n ≥ 2.

Proof. Exercise. �

1.2.9. Proposition. Assume char(K) 6= 2. Let (V, q) be a quadratic space over
K, d ∈ K×. Then d ∈ DK(q) if and only if q ∼= 〈d〉 ⊥ (V ′, q′) for some quadratic
space (V ′, q′).

Proof. Clearly d = d · 12 + q′(0) ∈ DK(〈d〉 ⊥ (V ′, q′)) for any quadratic space
(V ′, q′).

Conversely, assume that d ∈ DK(q). Let W be any subspace of V such that
V = V ⊥ ⊕W . Then (W, q|W ) is nonsingular, and, in view of Proposition 1.1.13,
we have DK(q|W ) = DK(q). We may thus restrict our quadratic form to W , and
assume without loss of generality that q is nonsingular.

Now take v ∈ V with q(v) = d. Set U = v⊥. We have v 6∈ v⊥ (since bq(v, v) =
2d 6= 0) and dim(U) = dim(V ) − 1 by Proposition 1.2.2, hence V = Kv ⊕ U .
Clearly q|Kv ∼= 〈d〉, so q ∼= 〈d〉 ⊥ (U, q|U) in view of Proposition 1.2.6. �

1.2.10. Corollary. Assume char(K) 6= 2, let (V, q) be a quadratic space over K
of dimension n. Then there exist a1, . . . , an ∈ K such that q ∼= 〈a1, . . . , an〉.

Proof. Apply Proposition 1.2.9 inductively. �

1.3. Exercises.

(1) Complete the proofs of Proposition 1.1.5, Proposition 1.1.6, Proposi-
tion 1.1.11 and Proposition 1.2.8.

(2) Illustrate by an example that the implication (a) ⇒ (b) in Proposi-
tion 1.1.13 does not hold in general if char(K) = 2.

(3) Consider the quadratic form on Q3 given by the following polynomial:

f(X1, X2, X3) = 3X2
1 + 6X1X2 + 3X2

2 −X2X3.

Explicitly construct a diagonal quadratic form q on Q3 such that (Q3, qf ) ∼=
(Q3, q).
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2. Lecture 2

Let always K be a field.

2.0.1. Definition. Let (V, q) be a quadratic space. If W is a subspace of V , the
quadratic space (W, q|W ) is called a subform of (V, q). By abuse of terminology,
we will also call a quadratic space (U, q′) which is isometric to (W, q|W ) for some
subspace W of V a subform of (V, q).

In this lecture, we will get closer to a classification of quadratic spaces over
a given field, by decomposing quadratic spaces as orthogonal sums of subforms
with specific properties.

2.1. Isotropic, totally isotropic, and hyperbolic forms. Recall from Defi-
nition 1.1.9 the definition of an isotropic quadratic form.

2.1.1. Definition. Let (V, q) be a quadratic space. We call (V, q) totally isotropic
if q(v) = 0 for all v ∈ V . If W is a subspace of V , we call W totally isotropic if
(W, q|W ) is totally isotropic.

Observe that a non-zero totally isotropic space is always singular.

2.1.2. Proposition. Assume char(K) 6= 2. Let (V, q) be a quadratic space. Then
the map

q : V/V ⊥ → K : v 7→ q(v)

is a well-defined nonsingular quadratic form.

Proof. The well-definedness follows from the fact that, for v ∈ V and w ∈ V ⊥,
one has q(v + w) = q(v) by Proposition 1.1.13. It is then easy to verify that the
map is a quadratic form.

For the nonsingularity, consider v ∈ V such that v 6= 0, i.e. v 6∈ V ⊥. Then
there exists w ∈ V with 0 6= bq(v, w) = bq(v, w), whereby v 6∈ (V/V ⊥)⊥. Hence
(V/V ⊥)⊥ = {0}, and thus (V/V ⊥, q) is nonsingular. �

The following observation was already used implicitly in the proof of Proposi-
tion 1.2.9.

2.1.3. Proposition. Assume char(K) 6= 2. Let (V, q) be a quadratic space. Let
W be an orthogonal complement of V ⊥. We have that

(V, q) ∼= (V ⊥, q|V ⊥) ⊥ (W, q|W ),

that (V ⊥, q|V ⊥) is totally isotropic, and that (W, q|W ) ∼= (V/V ⊥, q).

Proof. The first isometry is immediate form Proposition 1.2.6. The fact that
(V ⊥, q|V ⊥) is totally isotropic follows from Proposition 1.1.13.

Finally, consider the map

ι : W → V/V ⊥ : w 7→ w.
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Since W ∩V ⊥ = {0} we have that ι is injective, hence by comparing dimensions,
ι is bijective. Furthermore, by definition we have for w ∈ W that q(w) = q(w) =
q(ι(w)). Hence we have obtained the required isometry (W, q|W ) ∼= (V/V ⊥, q).

�

We can thus, in characteristic away from 2, decompose any quadratic space
into the orthogonal sum of a totally isotropic space and a nonsingular space, and
this decomposition is unique up to isometry.

We now want to study nonsingular isotropic forms. Nonsingular one-dimensional
quadratic forms are always anisotropic.

2.1.4. Definition. We call the quadratic form (K2, qf ) with f(X1, X2) = X1 ·X2

the hyperbolic plane over K and denote it by HK .

2.1.5. Proposition. Let (V, q) be a nonsingular quadratic space over K. Let
v ∈ V \ {0} such that q(v) = 0. Then there is a subspace W ⊆ V with v ∈ W
such that (W, q|W ) is isometric to HK.

Proof. Since (V, q) is nonsingular, there exists w ∈ V such that a = bq(v, w) 6= 0.
We may replace w by a−1w and assume without loss of generality that a = 1.
Observe that w 6∈ Kv, so that W = Kv ⊕Kw is a 2-dimensional subspace of V .
Consider the map

ι : K2 → W : (x, y) 7→ xv + y(w − q(w)v).

Clearly this is a K-isomorphism of vector spaces. We compute that, for x, y ∈ K,
we have

q(ι(x, y)) = q(xv + y(w − q(w)v))

= (x− yq(w))2q(v) + y2q(w) + bq((x− yq(w))v, yw)

= 0 + y2q(w) + (x− yq(w))ybq(v, w) = xy.

Hence (W, q|W ) ∼= HK . �

In particular, it follows from Proposition 2.1.5 that the hyperbolic plane is, up
to isometry, the only two-dimensional nonsingular isotropic quadratic form over
K. We also obtain the following

2.1.6. Corollary. Every nonsingular isotropic quadratic space is universal.

Proof. We know from Examples 1.1.10 that HK is universal. But by Proposi-
tion 2.1.5 every nonsingular isotropic quadratic space contains HK as a subspace,
hence is also universal. �

2.1.7. Corollary. Let (V, q) be a nonsingular quadratic space and d ∈ K×. We
have that d ∈ DK(q) if and only if q ⊥ 〈−d〉K is isotropic.

Proof. Exercise. �
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2.1.8. Proposition. Let (V, q) be a nonsingular quadratic space, W a nonsingular
subspace of V . Then V = W ⊕W⊥, (V, q) ∼= (W, q|W ) ⊥ (W⊥, q|W⊥), and also
(W⊥, q|W⊥) is nonsingular.

Proof. Since (V, q) is nonsingular, we have dimW + dimW⊥ = dimV by Propo-
sition 1.2.2. Since (W, q |W ) is nonsingular, we further have W ∩ W⊥ = {0}.
Hence, we obtain V = W ⊕ W⊥, and the natural induced K-isomorphism
V → W × W⊥ gives the required isometry (V, q) ∼= (W, q|W ) ⊥ (W⊥, q|W⊥);
see Proposition 1.2.6.

Finally, since (W⊥)⊥ = W by Proposition 1.2.2, we obtain (W⊥)⊥ ∩W⊥ =
W ∩W⊥ = {0}, whereby (W⊥, q|W⊥) is nonsingular. �

In the sequel, we will use the following notation: for a quadratic space (V, q)
and n ∈ N, we write

n× (V, q) = (V n, q ⊥ . . . ⊥ q︸ ︷︷ ︸
n times

).

We will denote the described quadratic form on V n simply by n× q. By conven-
tion, 0× (V, q) denotes the unique zero-dimensional quadratic space over K.

2.1.9. Proposition. Let (V, q) be a nonsingular quadratic space, n ∈ N. The
following are equivalent.

(1) V contains a totally isotropic subspace of dimension n,
(2) V contains a subform isometric to n×HK.

Proof. For n = 0 there is nothing to show, assume from now on that n ≥ 1.
Assume (2). Then V has subspaces W1, . . . ,Wn such that Wi ⊥ Wj and Wi ∩

Wj = {0} for any i 6= j and such that (Wi, q|Wi
) ∼= HK . Let wi ∈ Wi \ {0} be

such that q(wi) = 0. Then Kw1⊕ . . .⊕Kwn is an n-dimensional totally isotropic
subspace of V .

Conversely, assume (1). We argue via induction on n - recall that the case
n = 0 is covered, so we assume n ≥ 1. Let W be a totally isotropic subspace of
V of dimension n and let v ∈ W \ {0}. By Proposition 2.1.5 there exists w ∈ V
such that, for W ′ = Kv ⊕Kw, we have (W ′, q|W ′) ∼= HK . By Proposition 2.1.8
this implies that (V, q) ∼= HK ⊥ (U, q|U) for U = (W ′)⊥, and furthermore (U, q|U)
is nonsingular. Further, since W ⊆ v⊥, we have

U ∩W = (W ′)⊥ ∩W = v⊥ ∩ w⊥ ∩W = w⊥ ∩W
whereby dim(W ∩U) ≥ n−1. Hence (U, q|U) contains a totally isotropic subspace
W∩U of dimension n−1. The statement now follows by the induction hypothesis.

�

2.1.10. Corollary. Let (V, q) be a nonsingular quadratic space of dimension 2n,
where n ∈ N. The following are equivalent.

(1) V contains a totally isotropic subspace of dimension n,
(2) (V, q) ∼= n×HK.
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2.1.11. Definition. We say that a nonsingular quadratic space of dimension 2n
(for some n ∈ N) is hyperbolic if it contains a totally isotropic subspace of dimen-
sion n.

Given a quadratic space (V, q), we define the Witt index of (V, q) to be the
maximal possible dimension of a totally isotropic subspace of (V/V ⊥, q). We
denote it by iW (V, q), or simply iW (q).

2.1.12. Proposition. Let (V, q) be a nonsingular quadratic space. Then (V, q) ⊥
(V,−q) is hyperbolic.

Proof. Let n = dimV . Then dim(V × V ) = 2n. Let W = {(v, v) ∈ V × V | v ∈
V }. Then W is a subspace of V × V of dimension n, and it is a totally isotropic
subspace of (V, q) ⊥ (V,−q), since for any v ∈ V we have (q ⊥ −q)(v, v) =
q(v)− q(v) = 0.

Since (V, q) ⊥ (V,−q) is nonsingular (by Proposition 1.2.3) and has a totally
isotropic subspace of dimension n, it is hyperbolic. �

2.2. Witt’s Theorems. We are now in a position to prove the two most impor-
tant structure theorems on quadratic forms, named after Ernst Witt. We will
prove them, as Witt did in the 1930’ies, under the assumption that char(K) 6= 2.
Versions in characteristic 2 exist and can be proven with extra assumptions and
a lot more work, see [EKM08, Section 8].

2.2.1. Lemma. Assume that char(K) 6= 2. Let (V, q) be a quadratic space, and
let v, w ∈ V be such that q(v) = q(w) 6= 0. There exists an isometry τ : (V, q)→
(V, q) such that τ(x) = y.

Proof. One computes that q(v + w) + q(v − w) = 4q(v) 6= 0, so at least one of
q(v + w) and q(v − w) is non-zero. Replacing w by −w if necessary, we may
assume that q(v − w) 6= 0. Now consider the map

τ : V → V : u 7→ u− bq(u, v − w)

q(v − w)
(v − w).

One verifies that τ gives an isometry (V, q) → (V, q), and that τ(v) = w, as
desired; see Exercise (2). �

2.2.2. Theorem (Witt Cancellation Theorem). Assume char(K) 6= 2. Let (V, q),
(V1, q1) and (V2, q2) be quadratic spaces. If (V, q) ⊥ (V1, q1) ∼= (V, q) ⊥ (V2, q2),
then (V1, q1) ∼= (V2, q2).

Proof. We first reduce to the case where all involved quadratic spaces are nonsin-
gular. To this end, use Proposition 2.1.3 to write (V, q) ∼= (V ⊥, q|V ⊥) ⊥ (W, q|W ),
(V1, q1) ∼= (V ⊥1 , q1|V ⊥

1
) ⊥ (W1, q|W1) and (V2, q2) ∼= (V ⊥2 , q2|V ⊥

2
) ⊥ (W2, q|W2)

where q|W , q1|W1 and q2|W2 are nonsingular. The hypothesis can be rewritten as

((V ⊥ V1)
⊥, (q ⊥ q1)|(V⊥V1)⊥) ⊥ (W ⊥ W1, (q ⊥ q1)|W⊥W1)

∼= ((V ⊥ V2)
⊥, (q ⊥ q2)|(V⊥V2)⊥) ⊥ (W ⊥ W2, (q ⊥ q2)|W⊥W2),
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using that V ⊥ ⊥ V ⊥1 = (V ⊥ V1)
⊥ and similarly V ⊥ ⊥ V ⊥2 = (V ⊥ V2)

⊥. We
further have by Proposition 1.2.3 that (W ⊥ W1, (q ⊥ q1)|W⊥W1) and (W ⊥
W2, (q ⊥ q2)|W⊥W2) are nonsingular. In view of Proposition 2.1.3 we have

(W ⊥ W1, (q ⊥ q1)|W⊥W1)
∼= ((V ⊥ V1)/(V ⊥ V1)

⊥, q ⊥ q1)

∼= ((V ⊥ V2)/(V ⊥ V2)
⊥, q ⊥ q2) ∼= (W ⊥ W2, (q ⊥ q2)|W⊥W2),

We conclude that we may assume for the remainder of the proof that (V, q),
(V1, q1) and (V2, q2) are nonsingular.

By Corollary 1.2.10 we may assume that (V, q) ∼= 〈a1, . . . , an〉 for some a1, . . . , an ∈
K×. By inducting on n, we reduce to the situation n = 1. Let ι : 〈a〉K ⊥
(V1, q1) → 〈a〉K ⊥ (V2, q2) be an isometry. Let v = ι(1, 0). We have (〈a〉K ⊥
q2)(v) = (〈a〉K ⊥ q1)(1, 0) = a · 12 = a = (〈a〉K ⊥ q2)(1, 0).

By Lemma 2.2.1 there exists an isometry τ : 〈a〉K ⊥ (V2, q2)→ 〈a〉K ⊥ (V2, q2)
with τ(v) = (1, 0). Thus, τ ◦ ι gives an isometry 〈a〉K ⊥ (V1, q1) → 〈a〉K ⊥
(V2, q2) mapping (1, 0) to (1, 0). Furthermore, since (K × {0}) ⊥ ({0} × V1) (in
(K×V1, 〈a〉K ⊥ q1)) and isometries preserve orthogonality, we obtain (K×{0}) ⊥
(τ ◦ ι)({0} × V1) (in (K × V2, 〈a〉K ⊥ q2)). So, we must have (τ ◦ ι)({0} × V1) =
{0} × V2, whereby τ ◦ ι induces an isometry (V1, q1)→ (V2, q2), as desired. �

2.2.3. Theorem (Witt Decomposition Theorem). Assume char(K) 6= 2. Let
(V, q) be a quadratic space. There exist quadratic spaces (Vt, qt), (Vh, qh) and
(Va, qa) such that

(V, q) ∼= (Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa)

where

• (Vt, qt) is totally isotropic,
• (Vh, qh) is hyperbolic (or zero),
• (Va, qa) is anisotropic.

Furthermore, each of these spaces is determined up to isometry by (V, q). In fact,
(Vt, qt) is the unique totally isotropic space of dimension dimV ⊥, and (Vh, qh) is
the unique hyperbolic space of dimension 2iW (q).

Proof. We first prove the existence of the required spaces. By Proposition 2.1.3 we
can write (V, q) ∼= (Vt, qt) ⊥ (V ′, q′) where (Vt, qt) is totally isotropic of dimension
dimV ⊥ and (V ′, q′) is nonsingular. Let m = iW (V, q). By Proposition 2.1.9
and Proposition 2.1.8 we can write (V ′, q′) ∼= (Vh, qh) ⊥ (Va, qa) where (Vh, qh)
is hyperbolic of dimension 2m. (Va, qa) must be nonsingular, and in fact it is
anisotropic, since otherwise one could find a totally isotropic subspace of (V ′, q′)
of dimension m+ 1, contradicting the choice of m. This concludes the existence
part of the proof.

For the uniqueness, assume that

(V, q) ∼= (Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa) ∼= (V ′t , q
′
t) ⊥ (V ′h, q

′
h) ⊥ (V ′a, q

′
a)
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where (V ′t , q
′
t) is totally singular, (V ′h, q

′
h) is hyperbolic, and (V ′a, q

′
a) is anisotropic.

Since (V ′t , q
′
t) is totally isotropic and (V ′h, q

′
h) ⊥ (V ′a, q

′
a) is nonsingular, we must

have
dimV ′t = dimV ⊥ = dimVt.

Since (Vt, qt) and (V ′t , q
′
t) are totally isotropic of the same dimension, they must

be isometric. By Theorem 2.2.2 we obtain that (Vh, qa) ⊥ (Va, qa) ∼= (V ′h, q
′
h) ⊥

(V ′a, q
′
a). Similarly, since (V ′h, q

′
h) is hyperbolic and (V ′a, q

′
a) is anisotropic, we must

have dimV ′h = 2m = dimVh, whereby (Vh, qh) and (V ′h, q
′
h) are hyperbolic forms of

the same dimension and hence isometric. Finally, applying Theorem 2.2.2 again,
we obtain (Va, qa) ∼= (V ′a, q

′
a). �

2.3. Exercises.

(1) Complete the proof of Corollary 2.1.7.
(2) Let (V, q) be a quadratic space, and consider for v ∈ V with q(v) 6= 0 the

map

τv : V → V : w 7→ w − bq(w, v)

q(v)
v.

Show the following for any v ∈ V with q(v) 6= 0:
(a) τv is an isometry (V, q)→ (V, q),
(b) τv(v) = −v, and for w ∈ v⊥ we have τv(w) = w,
(c) If w ∈ V is such that q(v) = q(w) and q(v−w) 6= 0, then τv−w(v) = w.

(3) Show that the following are equivalent for a field K with char(K) 6= 2:
(a) Any two nonsingular quadratic spaces over K of the same dimension

are isometric.
(b) Every element of K is a square.

(4) Let (V, q) be a nonsingular isotropic space. Show that V has a basis
consisting of isotropic vectors.

(5) Let (V, q) be a nonsingular quadratic space, set n = dimV and m = iW (q).
Show that every subform of (V, q) of dimension greater than n − m is
isotropic.

(6) Assume char(K) 6= 2 and let (V1, q1) and (V2, q2) be nonsingular quadratic
spaces over K. Show that (V2, q2) is a subform of (V1, q1) if and only if
iW ((V1, q1) ⊥ (V2,−q2)) ≥ dimV2.

(7) Let K = F2, the field with two elements. Consider the quadratic form

q : K2 → K : (x, y) 7→ x2 + xy + y2.

Show that q ⊥ 〈1〉K ∼= HK ⊥ 〈1〉K , but q 6∼= HK . Conclude that Theo-
rem 2.2.2 does not hold as stated without the assumption char(K) 6= 2.

3. Lecture 3

3.1. Tensor products of symmetric bilinear spaces. In this section, we will
define the tensor product (sometimes called Kronecker product) of two symmetric
bilinear spaces. First, we define the tensor product of two K-vector spaces.
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Let V and W be K-vector spaces. Denote by K(V×W ) the free K-vector space
over the set V × W . That is, for each (v, w) ∈ V × W we fix an element
e(v,w) ∈ K(V×W ), and then {e(v,w) | (v, w) ∈ V ×W} is a basis of K(V×W ). Let A

be the subspace of K(V×W ) generated by elements of the form

e(v+av′,w) − e(v,w) − ae(v′,w) or e(v,w+aw′) − a(v,w) − ae(v,w′)

for v, v′ ∈ V , w,w′ ∈ W and a ∈ K.

3.1.1. Definition. With the notations from above, we call the quotient space
K(V×W )/A the tensor product of V and W , which we denote by V ⊗ W - or
V ⊗K W if we want to stress the underlying field. For v ∈ V and w ∈ W we
denote by v ⊗ w the class of e(v,w) in this quotient space. We call an element of
V ⊗K W of the form v ⊗ w for v ∈ V and w ∈ W an elementary tensor .

3.1.2. Remark. Be careful! Not every element of V ⊗W is of the form v ⊗ w for
v ∈ V and w ∈ W , i.e. not every element of V ⊗ W is an elementary tensor.
However, every element of V ⊗W is a sum of elementary tensors - although this
decomposition is not unique.

The tensor product V ⊗W is best understood through the following funda-
mental property.

3.1.3. Proposition (Universal property of tensor products). Let V and W be
K-vector spaces. The map V ×W → V ⊗W : (v, w) 7→ v ⊗w is a bilinear map,
and its image generates V ⊗W .

For any K-vector space U and any bilinear map B : V ×W → U , there exists
a unique linear map B : V ⊗W → U such that B(v, w) = B(v⊗w) for all v ∈ V ,
w ∈ W .

Proof. The bilinearity of the map V ×W → V ⊗W : (v, w) 7→ v⊗w follows from
the construction of V ⊗W : we have for any v1, v2 ∈ V , w1, w2 ∈ W and a, b ∈ K
that

(v1 + av2)⊗ (w1 + bw2) = (v1 ⊗ w1) + a(v2 ⊗ w1) + b(v1 ⊗ w2) + ab(v2 ⊗ w2).

The image of the map consists of elementary tensors, which by construction
generate V ⊗W .

Now consider any bilinear map B : V ×W → U . Since {e(v,w) | (v, w) ∈ V ×W}
form a basis ofK(V×W ), there is a uniqueK-linear map B̂ : K(V×W ) → U mapping
e(v,w) to B(v, w) for (v, w) ∈ V ×W . By the bilinearity of B, we compute that
for v1, v2 ∈ V and w1, w2 ∈ W we have

B̂(e(v1+av2,w1+bw2)) = B(v1 + av2, w1 + bw2)

= B(v1, w1) + aB(v2, w1) + bB(v1, w2) + abB(v2, w2)

= B̂(e(v1,w1) + ae(v2,w1) + be(v1,w2) + abe(v2,w2)).
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As such, Ker(B̂) contains all elements given as generators for the subspace A

of K(V×W ), whereby A ⊆ Ker(B̂). Recalling that V ⊗ W = K(V×W )/A, we
conclude that there exists a unique linear map B : V ⊗ W → U such that
B(v ⊗ w) = B̂(e(v,w)) = B(v, w) for all (v, w) ∈ V ×W . �

3.1.4. Proposition. Let U , V and W be K-vector spaces. The tensor product
satisfies the following properties.

(1) There is a unique K-isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v
for v ∈ V and w ∈ W .

(2) There is a unique K-isomorphism (U ⊗ V ) ⊗W → U ⊗ (V ⊗W ) such
that (u⊗ v)⊗ w 7→ u⊗ (v ⊗ w) for u ∈ U , v ∈ V and w ∈ W .

(3) There is a unique K-isomorphism (U × V )⊗W → (U ⊗W )× (V ⊗W )
such that ((u⊗ v), w) 7→ ((u⊗w), (v⊗w)) for u ∈ U , v ∈ V and w ∈ W .

(4) Let BV and BW be bases for V and W respectively. Then

{v ⊗ w | v ∈ BB, w ∈ BW}

is a basis for V ⊗W . In particular, dim(V ⊗W ) = dim(V ) dim(W ).

Proof. Each of these can be proven by making use of Proposition 3.1.3. �

We can now define the tensor product of symmetric bilinear spaces.

3.1.5. Proposition. Let (V1, B1) and (V2, B2) be symmetric bilinear spaces. There
exists a unique K-bilinear form B on V1 ⊗ V2 such that

B(v1 ⊗ v2, w1 ⊗ w2) = B1(v1, w1) ·B2(v2, w2)

for all v1, w1 ∈ V1 and v2, w2 ∈ V2.

Proof. The uniqueness is clear, since V ⊗W is generated by elementary tensors;
furthermore, since such a bilinear map would by definition be symmetric on
elementary tensors, it is automatically symmetric. It thus suffices to show the
existence of such a bilinear map B.

Consider first for (v1, v2) ∈ V1 × V2 the map

V1 × V2 → K : (w1, w2) 7→ B1(v1, w1) ·B2(v2, w2).

This map is bilinear, hence by Proposition 3.1.3 induces a linear map B(v1,v2) :
V1⊗V2 → K such that B(v1,v2)(w1⊗w2) = B1(v1, w1) ·B2(v2, w2) for w1 ∈ V1 and
w2 ∈ V2. The map

B∗ : V1 × V2 → (V1 ⊗ V2)∗ : (v1, v2) 7→ B(v1,v2)

is also bilinear, hence, again by Proposition 3.1.3, it induces a linear map B∗ :
V1 ⊗ V2 → (V1 ⊗ V2)∗ such that B∗(v1 ⊗ v2) = B(v1,v2) for (v1, v2) ∈ V1 × V2.

Finally, consider the bilinear map

B : (V1 ⊗ V2)× (V1 ⊗ V2) : (α, β) 7→ B∗(α)(β).
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We compute that, for v1, w1 ∈ V1 and v2, w2 ∈ V2, we have

B(v1 ⊗ v2, w1 ⊗ w2) = B∗(v1 ⊗ v2)(w1 ⊗ w2)

= B(v1,v2)(w1 ⊗ w2) = B1(v1, w1) ·B2(v2, w2).

Hence, B is as desired. �

3.1.6. Definition. Given symmetric bilinear spaces (V1, B1) and (V2, B2), we call
the symmetric bilinear space constructed in Proposition 3.1.5 the tensor product
of (V1, B1) and (V2, B2). We denote it by (V1 ⊗ V2, B1 ⊗B2).

Over fields of characteristic different from 2, we will also consider the ten-
sor product of quadratic spaces; this is by definition the quadratic space corre-
sponding to the tensor product of the underlying symmetric bilinear spaces, see
Proposition 1.1.8. That is, for quadratic spaces (V1, q1) and (V2, q2), we define

q1 ⊗ q2 : V1 ⊗ V2 → K : α 7→ (Bq1 ⊗Bq2)(α)

4
.

In the following proposition stating some computation rules, in the interest of
brevity, we represent a quadratic space just by its quadratic form.

3.1.7. Proposition. Assume char(K) 6= 2. For quadratic forms q1, q2, q3 over K
we have

q1 ⊗ q2 ∼= q2 ⊗ q1
(q1 ⊗ q2)⊗ q3 ∼= q1 ⊗ (q2 ⊗ q3)
(q1 ⊥ q2)⊗ q3 ∼= (q1 ⊗ q3) ⊥ (q2 ⊗ q3)

Proof. Each of these follows by checking that the isomorphism of vector spaces
established in Proposition 3.1.4 induces isometries of quadratic (/symmetric bi-
linear) spaces. �

3.1.8. Corollary. Let m,n ∈ N and let a1, . . . , am, b1, . . . , bn ∈ K. We have

〈a1, . . . , am〉K ⊗ 〈b1, . . . bn〉K ∼= 〈a1b1, . . . , aibj, . . . , ambn〉K

Proof. This follows by Proposition 3.1.7 and the easy observation that 〈a〉K ⊗
〈b〉K ∼= 〈ab〉K for a, b ∈ K. �

3.1.9. Corollary. Assume char(K) 6= 2. Let (V1, q1), (V2, q2) be nonsingular qua-
dratic spaces. Then (V1 ⊗ V2, q1 ⊗ q2) is nonsingular.

Proof. By Corollary 1.2.10 and Proposition 1.2.8 both (V1, q1) and (V2, q2) are
isometric to diagonal forms where all entries are non-zero. By Corollary 3.1.8 the
same holds for (V1 ⊗ V2, q1 ⊗ q2), whence this form is also nonsingular. �

3.1.10. Corollary. Assume char(K) 6= 2. Let (V, q) be a nonsingular quadratic
space. Then (V, q)⊗HK is hyperbolic.
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Proof. We have HK
∼= 〈1,−1〉K (see Example 1.1.7). Hence, by Proposition 3.1.7,

(V, q)⊗HK
∼= (V, q)⊗ 〈1,−1〉K ∼= (V, q) ⊥ (V,−q)

which is hyperbolic by Proposition 2.1.12. �

3.2. Exercises.

(1) Prove Proposition 3.1.4 and Proposition 3.1.7.

4. Lecture 4

4.1. Witt equivalence and the Witt ring. Throughout this subsection, all
quadratic spaces are consider over a fixed field K, and we assume char(K) 6= 2.

4.1.1. Definition. Let (V (1), q(1)) and (V (2), q(2)) be quadratic spaces. In view of
Theorem 2.2.3 we may write

(V (1), q(1)) ∼= (V
(1)
t , q

(1)
t ) ⊥ (V

(1)
h , q

(1)
h ) ⊥ (V (1)

a , q(1)a )

(V (2), q(2)) ∼= (V
(2)
t , q

(2)
t ) ⊥ (V

(2)
h , q

(2)
h ) ⊥ (V (2)

a , q(2)a )

where

• (V
(1)
t , q

(1)
t ) and (V

(2)
t , q

(2)
t ) are totally isotropic,

• (V
(1)
h , q

(1)
h ) and (V

(2)
h , q

(2)
h ) are hyperbolic (or zero),

• (V
(1)
a , q

(1)
a ) and (V

(2)
a , q

(2)
a ) are anisotropic.

We say that (V (1), q(1)) and (V (2), q(2)) are Witt equivalent if dimV
(1)
t = dimV

(2)
t

and (V
(1)
a , q

(1)
a ) ∼= (V

(2)
a , q

(2)
a ). We denote this by (V (1), q(1)) ≡ (V (2), q(2)).

Theorem 2.2.3 yields that this is indeed a well-defined equivalence relation on
the class of quadratic spaces over K. One has the following easy observations.

4.1.2. Proposition. Let (V1, q1) and (V2, q2) be quadratic spaces.

(1) (V1, q1) ∼= (V2, q2) if and only if (V1, q1) ≡ (V2, q2) and dimV1 = dimV2.
(2) In every Witt equivalence class, there is up to isometry a unique anisotropic

quadratic space. In particular, if (V1, q1) ≡ (V2, q2) and both are anisotropic,
then (V1, q1) ∼= (V2, q2).

For a quadratic space (V, q), let us denote by [(V, q)] its Witt equivalence class.
Let us denote by W (K) the set of equivalence classes of nonsingular quadratic
spaces up to Witt equivalence. We will see now that this set can naturally be
given a ring structure.

4.1.3. Theorem. The rules

⊥: W (K)×W (K)→ W (K) : ([(V1, q1)], [(V2, q2)])→ [(V1 × V2, q1 ⊥ q2)] and

⊗ : W (K)×W (K)→ W (K) : ([(V1, q1)], [(V2, q2)])→ [(V1 ⊗ V2, q1 ⊗ q2)]
are well-defined binary operations on W (K), making W (K) into a commutative
ring with addition ⊥ and multiplication ⊗. The class of the zero-dimensional
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form [〈〉K ] is a neutral element for ⊥, and [〈1〉K ] is a neutral element for ⊗.
Given [(V, q)] ∈ W (K), its additive inverse is given by [(V,−q)].

Proof. We first prove the well-definedness. That is, assume (V1, q1), (V
′
1 , q
′
1), (V2, q2), (V2, q

′
2)

are such that (V1, q1) ≡ (V ′1 , q
′
1) and (V2, q2) ≡ (V ′2 , q

′
2), we need to show that

(V1 × V2, q1 ⊥ q2) ≡ (V ′1 × V ′2 , q′1 ⊥ q′2) and (V1 ⊗ V2, q1 ⊗ q2) ≡ (V ′1 ⊗ V ′2 , q′1 ⊗ q′2).
Since nonsingular quadratic spaces are Witt equivalent if and only if they are
isometric after adding a number of copies of the hyperbolic plane to one of them,
it suffices to consider the case (V1, q1) = (V ′1 , q

′
1) and (V ′2 , q

′
2) = (V2, q2) ⊥ HK .

We compute that

(V1, q1) ⊥ ((V2, q2) ⊥ HK) ∼= ((V1, q1) ⊥ (V2, q2)) ⊥ HK ≡ (V1, q1) ⊥ (V2, q2)

as desired. Similarly

(V1, q1)⊗ ((V2, q2) ⊥ HK) ∼= (V1, q1)⊗ (V2, q2) ⊥ (V1, q1)⊗HK

∼= (V1, q1)⊗ (V2, q2) ⊥ dim(V1)×HK

≡ (V1, q1)⊗ (V2, q2)

where the second isometry follows from Corollary 3.1.10. This shows that the
operations ⊥ and ⊗ are well-defined on W (K)×W (K). The associativity, com-
mutativity and distributivity are immediate from the corresponding properties
for ⊥ and ⊗ on quadratic spaces. That [〈〉K ] is a neutral element for ⊥ and [〈1〉K ]
is a neutral element for ⊗, is readily verified. Finally, that [(V,−q)] = −[(V, q)]
is a reformulation of Proposition 2.1.12. �

4.1.4. Definition. The set W (K) endowed with the ring structure described in
Theorem 4.1.3 is called the Witt ring of K.

4.1.5. Proposition. W (K) has a unique ideal of index 2, which is given by

I(K) = {[(V, q)] | dimV even}.

Proof. Observe that, if two nonsingular quadratic spaces are Witt equivalent,
then their dimensions differ by an even number. In particular, if one of them
has even dimension, then the other too. It is easy to see that I(K) is an
ideal. Furthermore, it has index 2, because for any quadratic space (V, q), ei-
ther [(V, q)] ∈ I(K), or [(V, q) ⊥ 〈1〉K ] ∈ I(K).

Assume that J is another ideal of W (K) of index 2. For a, b ∈ K×, we have
that [〈a〉K ], [〈b〉K ] ∈ W (K)× ⊆ W (K) \ J , hence [〈a, b〉K ] ∈ J . In view of
Corollary 1.2.10, we conclude that J contains all classes of quadratic spaces of
even dimension, hence I(K) ⊆ J . But then I(K) = J . �

4.1.6. Definition. The ideal I(K) described in Proposition 4.1.5 is called the
fundamental ideal of W (K).

4.1.7. Remark. Over a field K with char(K) = 2, the situation is more subtle.
There are natural operations ⊥ and ⊗ on the class of symmetric bilinear spaces
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over K, and this allows one to define a Witt ring W (K) of nonsingular symmetric
bilinear forms. On the class of quadratic spaces over K there is no natural notion
of tensor product, but one can still define a group operation ⊥, and one obtains
a different object from W (K): the quadratic Witt group Iq(K). While Iq(K)
is not a ring, it does carry an action by W (K): Iq(K) is a W (K)-module. See
[EKM08, Sections 2, 8] for more on this.

4.2. Determinants and discriminants. We briefly introduce the concept of
the determinant of a symmetric bilinear form. This allows us to simplify certain
computations with small-dimensional quadratic forms.

4.2.1. Proposition. Let (V1, B1) and (V2, B2) be isometric symmetric bilinear
spaces with bases B1 and B2. Then det(MB1(B1)) ≡ det(MB2(B2)) mod K×2.

Proof. It suffices to consider the case V1 = V2 = Kn for n = dim(V1), and where
B1 is the canonical basis {e1, . . . , en}. Let C ∈ Mn(K)× be the base change
matrix between B1 and B2, i.e. such that B2 = {Ce1, . . . , Cen}. We see that for
column vectors v, w ∈ Kn we have

vTCTMB1(B)Cw = B(Cv,Cw) = vTMB2(B)w

whenceMB2(B) = CTMB1(B)C and hence det(MB2(B)) = det(MB1(B)) det(C)2 ≡
det(MB2(B)) mod K×2 as desired. �

4.2.2. Definition. For a nonsingular symmetric bilinear space (V,B), we de-
fine the determinant of (V,B) (or simply of B) to be the equivalence class of
det(MB(B)) in K×/K×2, where B is any basis of V . We denote it simply by
det(V,B).

If char(K) 6= 2 and (V, q) is a quadratic space over K, we define its determinant

as the determinant of (V, bq
2

).

For the rest of this subsection, assume that all quadratic spaces are considered
over a field K with char(K) 6= 2.

4.2.3. Proposition. We have the following properties.

(1) For nonsingular quadratic spaces (V1, q1) and (V2, q2) we have det((V1, q1) ⊥
(V2, q2)) = det(V1, q1) · det(V2, q2).

(2) For a1, . . . , an ∈ K× we have det(〈a1, . . . , an〉K) ≡ a1 · · · an mod K×2.
(3) det(HK) ≡ −1 mod K×2.

Proof. These can be verified easily via the definition. �

In general, over a field where −1 is not a square, determinants of Witt equiv-
alent quadratic forms might differ by a minus sign. This can be easily remedied.

4.2.4. Definition. Let (V, q) be a nonsingular quadratic space. We define its
discriminant (in some books called signed determinant) to be

d(V, q) = (−1)(
dim(V )

2 ) det(V, q) ∈ K×/K×2.
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Observe that for a natural number n we have

(−1)(
n
2) =

{
1 if n ≡ 0, 1 mod 4

−1 if n ≡ 2, 3 mod 4
.

In particular, if m and n are two natural numbers and at least one of them is
even, then it follows that

(1) (−1)(
m
2 )(−1)(

n
2) = (−1)(

m+n
2 ).

4.2.5. Proposition. If (V, q) and (V ′, q′) are Witt equivalent nonsingular qua-
dratic spaces, then d(V, q) = d(V ′, q′). Furthermore, the map

IK → K×/K×2 : [(V, q)] 7→ d(V, q)

is a well-defined surjective group homomorphism.

Proof. For the first part, we need to check that is (V, q) ≡ (V ′, q′), then d(V, q) =
d(V ′, q′). It suffices to consider the case where (V ′, q′) = (V, q) ⊥ HK . We
compute using Proposition 4.2.3 and eq. (1) that

d((V, q) ⊥ HK) = (−1)(
dim(V )+2

2 ) det((V, q) ⊥ HK)

= −(−1)(
dim(V )

2 ) det(V, q) det(HK)

= (−1)(
dim(V )

2 ) det(V, q) = d(V, q)

as desired. This also shows that the given map is well-defined.
The fact that it is a group homomorphism is now also immediate from Proposi-

tion 4.2.3 and eq. (1). For the surjectivity, it suffices to observe that d(〈1,−a〉K) ≡
a mod K×2 for a ∈ K×. �

As announced, determinants are a useful invariant of quadratic spaces which
can help to simplify certain calculations. We give an important example.

4.2.6. Proposition. Let a, b, c ∈ K× and assume that c ∈ DK(〈a, b〉K). Then
〈a, b〉K ∼= 〈c, abc〉K.

Proof. By Proposition 1.2.9 we have 〈a, b〉K ∼= 〈c, d〉K for some d ∈ K×. But since
cd ≡ det(〈c, d〉K) ≡ det(〈a, b〉K) ≡ ab mod K×, we must have d ≡ abc mod K×2,
whereby 〈c, d〉K ∼= 〈c, abc〉K . This concludes the proof. �

4.3. Multiplicative forms. When (V, q) is a quadratic space, the set DK(q)
of elements of K× represented by q is in general just a subset of K×. We now
consider a class of quadratic forms where this is in fact a subgroup.

4.3.1. Definition. Let (V, q) be a quadratic space. We call the set

GK(q) = {a ∈ K× | (V, q) ∼= (V, aq)}
the set of similarity factors of (V, q).

By a multiplicative form over K (some books use the term round form) we
mean a nonsingular quadratic form q for which DK(q) = GK(q).
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4.3.2. Example. Every hyperbolic form is multiplicative, see Corollary 2.1.10.

4.3.3. Proposition. Let (V, q) be a nonsingular quadratic space over K.

(1) GK(q) is a subgroup of K× that contains K×2.
(2) GK(q) ·DK(q) = DK(q).

Proof. The first part is clear. For the second part, consider a ∈ GK(q) and
d ∈ DK(q), then ad ∈ DK(aq) = DK(q). �

For the rest of this subsection, assume char(K) 6= 2.

4.3.4. Theorem (Witt). Let q be a multiplicative form over K and a ∈ K×.
Then the form 〈1, a〉K ⊗ q is multiplicative. Moreover, if q is anisotropic, then
〈1, a〉K ⊗ q is either anisotropic or hyperbolic.

Proof. Let q′ = 〈1, a〉K ⊗ q. We have 1 ∈ GK(q) = DK(q) ⊆ DK(q′) and hence
GK(q′) ⊆ DK(q′) by Proposition 4.3.3. Further, observe that DK(q)∪ aDK(q) =
GK(q) ∪ aGK(q) ⊆ GK(q′). Now consider c ∈ DK(q′) \ (DK(q) ∪ aDK(q)) arbi-
trary. Then there exist s, t ∈ DK(q) = GK(q) such that c ∈ DK(〈s, at〉K). By
Proposition 4.2.6 it follows that 〈s, at〉K ∼= 〈c, acst〉K . We now compute that

q′ ∼= q ⊥ aq ∼= sq ⊥ atq ∼= 〈s, at〉K ⊗ q ∼= 〈c, acst〉K ⊗ q
∼= cq ⊥ acstq ∼= cq ⊥ acq ∼= cq′

whereby c ∈ GK(q′). Since c ∈ DK(q′) was chosen arbitrarily, we conclude that
q′ is multiplicative.

For the second part, assume that q is anisotropic and q′ is isotropic. Then
there exist s, t ∈ DK(q) = GK(q) with 〈s, at〉K ∼= HK . We compute that

q′ ∼= q ⊥ aq ∼= sq ⊥ atq ∼= 〈s, at〉K ⊗ q ∼= HK ⊗ q
which is hyperbolic by Corollary 3.1.10. �

4.3.5. Definition. For n ∈ N and a1, . . . , an ∈ K×, we use the notation

〈〈a1, . . . , an〉〉K = 〈1,−a1〉 ⊗ . . .⊗ 〈1,−an〉K .
In particular, 〈〈〉〉K = 〈1〉K , and 〈〈a1〉〉K = 〈1,−a1〉K . We call a form which is
isometric to 〈〈a1, . . . , an〉〉K for some a1, . . . , an ∈ K× an n-fold Pfister form.

4.3.6. Theorem (Pfister). Let q be a Pfister form over K. Then q is multiplica-
tive, and either anisotropic or hyperbolic.

Proof. Assume that q is an n-fold Pfister form; we proceed by induction on n.
For n = 0 we have q ∼= 〈1〉K ; this form is anisotropic and DK(q) = K×2 = GK(q).
Assume now n > 0. We have that q ∼= 〈1,−a〉K ⊗ q′ for some (n − 1)-fold
Pfister form q′ over K. If q′ is anisotropic, then by induction hypothesis, q′ is
multiplicative, and by Theorem 4.3.4 also q is multiplicative and either anisotropic
or hyperbolic. If q′ is isotropic, then by induction hypothesis it is hyperbolic, and
then also q is hyperbolic by Corollary 3.1.10. �
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We mention the following partial converse to Theorem 4.3.6, the proof of which
is outside the scope of this course. We will not use this result in the sequel. For
a quadratic form q over K and a field extension L/K, we denote by qL the
quadratic form over L obtained by extending scalars from K to L (we will see a
formal definition later, see Definition 6.2.2).

4.3.7. Theorem (Pfister). Let q be an anisotropic quadratic form over K. The
following are equivalent.

(1) q is a Pfister form,
(2) DL(qL) is a subgroup of L× for every field extension L/K,
(3) 1 ∈ DK(q) and for every field extension L/K we have that qL is either

anisotropic or hyperbolic.

Proof. See [EKM08, Theorem 23.2 and Corollary 23.4]. �

4.3.8. Remark. Over a field K of characteristic 2, one can define a notion of
Pfister form both for bilinear forms and for quadratic forms. As usual, we refer to
[EKM08, Sections 7 and 9] for a characteristic-free exposition. An example of a 1-
fold quadratic Pfister form is given by X2+XY +aY 2 for a ∈ K. These quadratic
Pfister forms still satisfy the properties of Theorem 4.3.6 in characteristic 2.

4.4. Exercises. In all exercises, assume K is a field with char(K) 6= 2.

(1) Compute the Witt ring of C and R.
(2) Let K be finite. Show the following:

(a) |K×/K×2| = 2,
(b) Every nonsingular 2-dimensional quadratic form over K is universal.
(c) Assume d ∈ K× \K×2. Every anisotropic quadratic form over K is

isometric to precisely one of the following forms:

〈〉K 〈1〉K 〈d〉K 〈1,−d〉K

(d) If |K| ≡ 1 mod 4, then −1 ∈ K×2 and WK ∼= (Z/2Z)[T ]/(T 2 + 1).
(e) If |K| ≡ 3 mod 4, then −1 6∈ K×2 and WK ∼= Z/4Z.

(3) Show that for a, b ∈ K× and a Pfister form q over K we have 〈〈a〉〉K ⊗ q ∼=
〈〈b〉〉K ⊗ q if and only if ab ∈ DK(q).

(4) Let q be a 4-dimensional nonsingular quadratic form over K with 1 ∈
DK(q) and det(q) ≡ 1 mod K×2. Show that q is a Pfister form.

(5) Let q be a universal 3-dimensional quadratic form over K. Show that q
is isotropic.

(6) Show thatDQ(〈1, 1〉Q) is a subgroup of Q×. Is the same true forDQ(〈1, 1, 1〉Q)?
(7) Give an example of an anisotropic quadratic form which is multiplicative

but not a Pfister form.
(8) Let n ∈ N and suppose that −1 is a sum of 2n+1 − 1 squares in K. Show

that −1 is a sum of 2n squares in K.
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5. Lecture 5

5.1. Powers of the fundamental ideal. Assume throughout that K is a field
with char(K) 6= 2 and that all quadratic spaces are considered over K.

We will consider powers of the fundamental ideal IK of the Witt ring WK. For
a natural number n, we denote by InK the ideal of WK generated by products
of n elements in IK. By convention, we set I0K = WK. We obtain a natural
filtration

WK = I0K ⊇ I1K = IK ⊇ I2K ⊇ I3K ⊇ . . .

We can try to understand the group WK better by studying the ideals InK,
and/or by studying the quotients InK/In+1K. We already know thatWK/I1K ∼=
Z/2Z, see Proposition 4.1.5.

5.1.1. Proposition. For n ≥ 1, the ideal InK is generated as a group by the Witt
classes of n-fold Pfister forms in K.

Proof. First observe that, for a, b ∈ K×, we have

〈a, b〉K ≡ 〈a, b〉K ⊥ HK
∼= 〈1, a〉K ⊥ −〈1,−b〉K ∼= 〈〈−a〉〉K ⊥ −〈〈b〉〉K .

Since every nonsingular binary quadratic form is isometric to 〈a, b〉K for some
a, b ∈ K× and since binary quadratic forms generate IK, we conclude that IK
is generated as a group by 1-fold Pfister forms. Since an n-fold Pfister form is by
definition a product of n 1-fold Pfister forms, we conclude that InK is generated
by n-fold Pfister forms, as desired. �

A quadratic form over K which is isometric to aπ for a Pfister form π and an
element a ∈ K× is called a scaled Pfister form. Observe that the class of a scaled
n-fold Pfister form lies in InK.

5.1.2. Lemma. Let (V, q) a nonsingular quadratic space over K, assume dim(V ) ≥
3. There exists a quadratic space (W, q′) with dim(W ) = dim(V )−2 and a scaled
Pfister form (P, qP ) such that (V, q) ≡ (W ′, q′) ⊥ (P, qP ).

Proof. In view of Corollary 1.2.10 it suffice to consider the case where (V, q) =
〈a, b, c〉K for a, b, c ∈ K×. Now set q′ = 〈−abc〉K and qP = abc〈〈−ab, ac〉〉K . We
have dim(q′) = 1 and we compute that

q′ ⊥ qP ∼= 〈−abc, abc〉K ⊥ 〈a, b, c〉K ∼= HK ⊥ q ≡ q.

Hence q′ and qP are as desired. �

5.1.3. Proposition. The homomorphism d : IK → K×/K×2 : [(V, q)] 7→ d(V, q)
from Proposition 4.2.5 has kernel I2K. In particular, IK/I2K ∼= K×/K×2.

Proof. One computes that, for any a, b ∈ K×, we have

d(〈〈a, b〉〉K) = d(〈1,−a,−b, ab〉K) ≡ 1 mod K×2.

So, any equivalence class of a 2-fold Pfister form lies in the kernel of d. In view
of Proposition 5.1.1 we conclude that I2K ⊆ Ker(d).



QUADRATIC FORMS AND CLASS FIELDS II: LECTURE NOTES 25

For the converse implication, consider ζ ∈ Ker(d). By Lemma 5.1.2 we have
ζ ≡ [(V, q)] mod I2K where dim(V ) = 2. Since I2K ⊆ Ker(d) by the previous
paragraph, we conclude that d(V, q) = d(ζ) ≡ 1 mod K×2. But then det(V, q) =
−1, which implies (V, q) ∼= HK , whereby [(V, q)] = 0, and we conclude that
ζ ∈ I2K as desired. �

5.1.4. Proposition. Let (V, q) be a nonsingular quadratic space with [(V, q)] ∈
I2K and m = dim(V )/2 − 1. There exist scaled 2-fold Pfister forms π1, . . . , πm
such that [(V, q)] =

∑m
i=1[πi].

Proof. If m = 0 then, as in the proof of Proposition 5.1.3, we see that (V, q) must
be hyperbolic, hence [(V, q)] = 0. The general case now follows from Lemma 5.1.2
by induction on m. �

5.1.5. Question. Let n, d ∈ N+. Does there exist a natural number m such that
every d-dimensional quadratic space (V, q) with [(V, q)] ∈ InK is Witt equivalent
to a sum of m scaled Pfister forms?

For n = 1 the answer is easy (every binary nonsingular quadratic form is a
scaled Pfister form, so one can take m = d/2), and for n = 2 one can take
m = d/2 − 1 by Proposition 5.1.4. For n = 3 it is known that such a number
m exists, and that it grows at least exponentially as a function of d [BRV10].
For n > 3 it is completely open whether such a number m exists in general. Of
course, over many specific fields K, often the situation is much easier.

We mention the following major theorem, without providing a proof.

5.1.6. Theorem (Arason-Pfister Hauptsatz, 1971). Let n ∈ N and let (V, q) be a
nonsingular quadratic space with [(V, q)] ∈ InK.

(1) Either dim(V ) ≥ 2n or (V, q) is hyperbolic.
(2) If dim(V ) = 2n, then (V, q) is a scaled n-fold Pfister form.

Proof. The first part is [EKM08, Theorem 23.7]. The second part follows from
combining the first part with Theorem 4.3.7. �

5.1.7. Corollary. We have
⋂
n∈N I

nK = {0}.

Proof. Consider a non-zero element of WK, then it is of the form [(V, q)] for
some non-zero anisotropic quadratic form q. For n > log2(dim(V )) we have
[(V, q)] 6∈ InK by Theorem 5.1.6. �

5.2. Exercises.

(1) Show the following:
(a) |K×/K×2| < ∞ if and only if, for every n ∈ N, there exist up to

isomorphism only finitely many anisotropic quadratic forms of di-
mension n, if and only if WK is a noetherian ring,

(b) |WK| <∞ if and only if |K×/K×2| <∞ and −1 is a sum of squares
in K.
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6. Lecture 6

6.1. Signatures and orderings. Much more can be said about the structure of
Witt rings, see e.g. [EKM08, Chapter V] or [Lam05, Sections VIII.7 and VIII.8].
We explain one important source of structure on a field which can introduce com-
plexity into its Witt ring: orderings. For a very detailed discussion of orderings
and their interplay with quadratic forms, we refer to the book [Lam83].

6.1.1. Definition. Let K be a field. A (field) ordering on K is a total order
relation ≤ on K such that for all a, b, c ∈ K one has

• if a ≤ b, then a+ c ≤ a+ c,
• if a ≤ b and 0 ≤ c, then ac ≤ bc.

A tuple (K,≤) where K is a field and ≤ is an ordering on K is called an ordered
field .

6.1.2. Examples. The usual ordering on R (a ≤ b if and only if b− a is a square
in R) makes R into an ordered field.
If (K,≤K) is an ordered field and ι : L→ K is an embedding of fields, then one
can naturally define an ordering ≤L on L as follows: for a, b ∈ L, let a ≤L b if
and only if ι(a) ≤K ι(b). In particular, an embedding of a field L into R naturally
induces an ordering on L.

Whether or not a field can be made to carry an ordering is characterised by
the Artin-Schreier Theorem.

6.1.3. Theorem (Artin-Schreier). A field K carries a field ordering if and only
if −1 is not a sum of squares in K.

Proof. If K carries an ordering ≤, then for any a ∈ K one has 0 ≤ a2. In
particular, it follows that any sum of squares in K is positive. But −1 is negative,
hence it cannot be a sum of squares. See exercise (1) for details.

See [Lam83, 1.5] for a proof of the other implication. �

The above implies in particular that, if K is a field carrying an ordering, then
char(K) = 0.

6.1.4. Definition. Let (K,≤) be an ordered field, (V, q) a nonsingular quadratic
form over K. We call q positive definite with respect to ≤ if 0 ≤ a for all a ∈
DK(q), negative definite with respect to ≤ if a ≤ 0 for all a ∈ DK(q), and indefinite
with respect to ≤ if it is neither positive nor negative definite.

6.1.5. Theorem (Sylvester’s law of inertia). Let (K,≤) be an ordered field, (V, q)
a nonsingular quadratic form over K. There exist quadratic forms q+ and q−

which are positive definite with respect to ≤ and such that q ∼= q+ ⊥ −q−. The
numbers dim(q+) and dim(q−) depend only on q.
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Proof. For the existence of q+ and q−, we may assume by Corollary 1.2.10 that
q is a diagonal form, from which the statement is immediate, since every 1-
dimensional nonsingular quadratic form is either positive or negative definite
with respect to ≤.

For the uniqueness, assume that q ∼= q+1 ⊥ −q−1 ∼= q+2 ⊥ −q−2 for some totally
positive forms q+1 , q

−
1 , q

+
2 , q

−
2 over K. That is, there exist subspaces U,W of V

such that q|U ∼= q+1 , q|U⊥ ∼= −q−11 , q|W ∼= q+2 , q|W⊥ ∼= −q−2 . We observe that
U⊥ ∩W = 0 = U ∩W⊥ since DK(q+1 ) ∩ DK(−q−2 ) = ∅ = DK(q+2 ) ∩ DK(−q−1 ).
From this we infer that dim(U) = dim(W ) and thus dim(U⊥) = dim(W⊥),
whereby dim(q+1 ) = dim(q+2 ) and dim(q−1 ) = dim(q−2 ). �

6.1.6. Definition. For an ordered field (K,≤) and a nonsingular quadratic form
q over K, define the signature of q with respect to ≤ as the integer dim(q+) −
dim(q−), where q+ and q− are as in Theorem 6.1.5 - this depends only on the
isometry class of q. We denote this integer by sign≤(q).

6.1.7. Proposition. Let (K,≤) be an ordered field. There is a well-defined ring
homomorphism

WK → Z : [(V, q)] 7→ sign≤(q).

Proof. Observe that sign≤(HK) = sign≤(〈1,−1〉K) = 0. It follows that, if (V, q) ≡
(W, q′), then sign≤(q) = sign≤(q′), showing that the map is well-defined on WK.
The fact that it is a ring homomorphism is easily verified. �

The kernel of the homomorphism defined in Proposition 6.1.7 is a prime ideal
of WK called the signature ideal of ≤, which we will denote by I≤K.

We mention without proof two theorems about the prime ideals of the Witt
ring and about torsion in the Witt ring.

6.1.8. Theorem (Leicht-Lorenz, Harrison, 1970). Let p be a prime ideal of WK
different from IK. Then we can define an ordering ≤ on K as follows: for
a, b ∈ K with a 6= b, set

a ≤ b ⇔ [〈1, a− b〉K ] ∈ p.

Furthermore, I≤K ⊆ p.

Proof. See e.g. [EKM08, Theorem 31.24]. �

6.1.9. Theorem (Pfister’s Local-global principle, 1966). The following are equiv-
alent for a quadratic space (V, q) over K.

(1) sign≤(q) = 0 for all orderings ≤ on K,
(2) [(V, q)] is torsion in WK,
(3) [(V, q)] is 2k-torsion in WK for some k ∈ N.

Proof. See e.g. [Lam05, Theorem VIII.3.2]. �



28 NICOLAS DAANS

6.2. Field extensions. For a field extension L/K and a K-vector space V , the
vector space VL = V ⊗ L naturally becomes an L-vector space, with dimK(V ) =
dimL(VL) - see Proposition 3.1.4. Furthermore, via the embedding V → V ⊗ L :
v 7→ v⊗ 1, we may identify V with a K-subspace of V ⊗L. We will now see that
this gives a natural way to ‘extend’ symmetric bilinear and quadratic forms from
K to L.

6.2.1. Proposition. Consider a field K and a field extension L/K. For a sym-
metric bilinear space (V,B) over K, there exists a unique symmetric bilinear form
BL on VL = V ⊗K L such that, for all v, w ∈ V and x, y ∈ L, one has

BL(v ⊗ x,w ⊗ y) = B(v, w)xy.

Similarly, for a quadratic space (V, q) over K, there exists a unique quadratic
form qL on VL such that, for all v ∈ V and x ∈ L, one has

qL(v ⊗ x) = x2q(v).

Proof. By redoing the proof of Proposition 3.1.5, using that B is a K-bilinear
map and also L × L → L : (x, y) 7→ xy is a K-bilinear map, one obtains that
there exists a unique symmetric K-bilinear map BL : VL × VL → L such that
BL(v ⊗ x,w ⊗ y) = B(v, w)xy for all v, w ∈ V and x, y ∈ L. One then readily
verifies that this map is actually also L-bilinear.

For the second statement, let us first consider uniqueness. If qL is a quadratic
form on VL such that qL(v ⊗ x) = x2q(v) for all v ∈ V and x ∈ L, then clearly
bqL = (bq)L. But qL is completely determined by its values on elementary tensors
and by bqL . This shows uniqueness.

If char(K) 6= 2, then the existence part of the statement follows from the fact
that q(v) = 1

2
bq(v, v) for all v ∈ V : one may just define qL(α) = 1

2
(bq)L(α, α) for

α ∈ VL. If char(K) = 2 then a more subtle argument is needed: one still has that
there exists some bilinear (but not necessarily symmetric) form B : V × V → K
such that q(v) = B(v, v) for all v ∈ V (see [EKM08, Section 7]) and one may
then set qL(α) = BL(α, α) for α ∈ VL. �

6.2.2. Definition. For a symmetric bilinear space (V,B) over K and a field ex-
tension L/K the symmetric bilinear space (V,B)L = (VL, BL) over L constructed
in Proposition 6.2.1 is called the scalar extension of (V,B) to K.

Similarly, for a quadratic space (V, q), we define the scalar extension of (V, q)
to L as the quadratic space (V, q)L = (VL, qL) constructed in Proposition 6.2.1.

For a quadratic space (V, q) over K, we will say that it is isotropic over L
(respectively anisotropic, hyperbolic, multiplicative, a Pfister form, ... over L) if
qL is isotropic (respectively anisotropic, hyperbolic, multiplicative, ...).

6.2.3. Remark. For a homogeneous degree 2 polynomial f ∈ K[X1, . . . , Xn] and
a field extension L/K, we can consider f as a polynomial over L. We then have
(Kn, qf )L = (Ln, qf ).
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One verifies easily that for quadratic spaces (V, q), (V ′, q′) one has that (V, q) ∼=
(V ′, q′) implies (VL, qL) ∼= (V ′L, q

′
L), that (q ⊥ q′)L ∼= qL ⊥ q′L, (q⊗ q′)L ∼= qL⊗ q′L,

and (HK)L = HL. Furthermore, if (V, q) is an n-fold Pfister form, then so is
(VL, qL). Putting this together, we obtain the following:

6.2.4. Proposition. Assume char(K) 6= 2, let L/K be a field extension. The
rule

rL/K : WK → WL : [(V, q)] 7→ [(VL, qL)]

gives a well-defined ring homomorphism. For n ∈ N, we have rL/K(InK) ⊆ InL.

6.2.5. Definition. Let L/K be a field extension. The map rL/K defined in Propo-
sition 6.2.4 is called the restriction homomorphism.

In the remainder of this section, we will investigate what it means that a
quadratic form becomes isotropic or hyperbolic over a finite field extension. Many
of the deeper theorems from quadratic form theory (e.g. Theorem 4.3.7 and
Theorem 5.1.6) rely on a study of quadratic forms over arbitrary (non-algebraic)
field extensions, e.g. over function fields. We refer to [EKM08, Chapters III-IV]
for more on this.

6.2.6. Theorem (Springer). Let (V, q) be an anisotropic quadratic space over K,
L/K a finite field extension of odd degree. Then (VL, qL) is anisotropic.

Proof. We may reduce to the case where (V, q) = (Kn, qQ) for some n ∈ N and a
homogeneous degree two polynomial Q ∈ K[X1, . . . , Xn]. We need to show that,
if there exists y ∈ Ln \ {0} such that Q(y) = 0, then there exists x ∈ Kn \ {0}
with Q(x) = 0.

We proceed by induction on m = [L : K]. If m = 1 there is nothing to show,
assume now that m > 1. We may assume that L/K has no proper intermediate
extensions, otherwise we may apply the induction hypothesis twice to conclude.
In particular, we may assume that L = K[α] for some α ∈ L.

Consider the unique ring homomorphism K[T ]→ L which maps X to α. It is
surjective, and its kernel is a non-zero prime ideal, which is generated by some
irreducible polynomial f(T ) ∈ K[T ] of degree m. By the First Isomorphism The-
orem, we conclude that L ∼= K[T ]/(f(T )). We assume without loss of generality
that L = K[T ]/(f(T )).

Assume now that y = (y1, . . . , yn) ∈ Ln \ {0} is such that Q(y) = 0. Let
g1, . . . , gn ∈ K[T ] be such that yi = gi and m′ = max{deg(g1), . . . , deg(gn)} <
deg(f) = m. We may further assume that g1(T ), . . . , gn(T ) are coprime. Write

gi =
∑m

j=0 a
(i)
j T

j for some a
(i)
j ∈ K, and observe that

Q(g1(T ), . . . , gn(T )) = Q(a
(1)
m′ , . . . , a

(n)
m′ )T

2m′
+R(T )

for someR(T ) ∈ K[T ] with deg(R(T )) < 2m′. Since by definition ofm′ not all a
(i)
m′

are zero, we conclude that either Q(a
(1)
m′ , . . . , a

(n)
m′ ) = 0 and then we have found our
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element x ∈ Kn with Q(x) 6= 0, or Q(a
(1)
m′ , . . . , a

(n)
m′ ) 6= 0. So assume for the sequel

that we are in the second case, in particular deg(Q(g1(T ), . . . , gn(T ))) = 2m′.
Since Q(y) = 0 in K[T ]/(f(T )), we have that f(T ) | Q(g1(T ), . . . , gn(T )).

More precisely, we have

f(T )h(T ) = Q(g1(T ), . . . , gn(T ))

for some polynomial h(T ) ∈ K[T ]. Comparing degrees, we have

m+ deg(h(T )) = deg(f(T )h(T )) = deg(Q(g1(T ), . . . , gn(T ))) = 2m′ < 2m.

Hence, deg(h(T )) < m, and deg(h(T )) is odd. Let p(T ) be an irreducible poly-
nomial dividing h(T ) of odd degree, then deg(p(T )) < m. Set L′ = K[T ]/(p(T ))
and set y′i = gi in L′. Then we have that L′/K is an odd degree extension with
[L′ : K] < [L : K], that y′ = (y′1, . . . , y

′
n) 6= 0 (since g1, . . . , gn are not all divisible

by p) and that Q(y′1, . . . , y
′
n) = 0. We now conclude by invoking the induction

hypothesis. �

6.2.7. Corollary. Let L/K be a finite field extension of odd degree. Then rL/K :
WK → WL is injective.

Proof. Consider a non-zero element of WK. This is of the form [(V, q)] for some
non-zero anisotropic quadratic space (V, q) over K. By Theorem 6.2.6 we have
that (VL, qL) is anisotropic, whereby 0 6= [(VL, qL)] = rL/K([(V, q)]). This shows
that Ker(rL/K) = 0, whereby rL/K is injective. �

We now characterise what it means that an anisotropic quadratic space (V, q)
becomes isotropic or hyperbolic over a quadratic extension. For the rest of this
subsection, let K be a field with char(K) 6= 2, let d ∈ K× \ K×2 and let L =

K[
√
d].

6.2.8. Proposition. Let (V, q) be an anisotropic quadratic space over K. Then
qL is isotropic if and only if there exists a ∈ DK(q) such that 〈a,−ad〉K is a
subform of (V, q).

Proof. Since 〈a,−ad〉L is isotropic for all a ∈ K×, one implication is clear.
Assume now that qL is isotropic, so there exists v ∈ VL\{0} such that qL(v) = 0.

We may write v = v0 + δv1 with v0, v1 ∈ V and δ ∈ L with δ2 = d. We compute
that

0 = qL(v) = qL(v0 + δv1) = q(v0) + dq(v1) + bq(v0, v1)δ.

Since {1, δ} is a K-basis of L, we must have q(v0) + dq(v1) = 0 = bq(v0, v1).
Since v 6= 0, both v0 and v1 are non-zero, and since q is anisotropic, this implies
that q(v0) = −dq(v1) 6= 0. Set a = q(v1). We see that v0 and v1 are linearly
independent and orthogonal, and thus finally that, for U = Kv0 +Kv1, we have
(U, q|U) ∼= 〈a,−ad〉K . �

6.2.9. Corollary. Let (V, q) be an anisotropic quadratic space over K. Then qL
is hyperbolic if and only if there exists a quadratic space (V ′, q′) over K such that
(V, q) ∼= 〈〈d〉〉K ⊗ q′.
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Proof. Since 〈〈d〉〉L is hyperbolic, it follows from Corollary 3.1.10 that (〈〈d〉〉K ⊗
q′)L ∼= 〈〈d〉〉L⊗q′L is hyperbolic for any non-singular quadratic space (V ′, q′). This
concludes the proof for one implication.

For the other implication, assume that qL is hyperbolic. We proceed by induc-
tion on dim(V ). For dim(V ) = 0 there is nothing to show (we may take q′ = 0).
Assume that dim(V ) > 0. Then q is isotropic. By Proposition 6.2.8 there exists
a ∈ DK(q) such that q ∼= 〈a,−ad〉K ⊥ q̂ for some quadratic form q̂ over K.
Since qL ∼= 〈a,−ad〉L ⊥ q̂L ∼= HL ⊥ q̂L and qL is hyperbolic, by Witt Cancellation
(Theorem 2.2.2) also q̂L is hyperbolic. By induction hypothesis, q̂ ∼= 〈1,−d〉K⊗ q̂′
for some quadratic form q̂′. Now set q′ = 〈a〉K ⊥ q̂′, then this q′ is as desired. �

6.2.10. Corollary. Let q be an anisotropic Pfister form over K and let q′ be a
form such that q ∼= 〈1〉K ⊥ q′. Then qL is isotropic if and only if −d ∈ DK(q′).

Proof. Exercise. �

6.3. Exercises. Let always K be a field with char(K) 6= 2.

(1) Let (K,≤) be an ordered field. Show the following for a, b, c ∈ K:
• −1 ≤ 0 ≤ 1,
• if a ≤ b and c ≤ 0, then bc ≤ ac,
• 0 ≤ a2.

(2) Verify the details in the proof of Proposition 6.1.7.
(3) Use Theorem 6.1.9 to prove Theorem 6.1.3.
(4) Let (K,≤) be an ordered field, n ∈ N and α ∈ InK. Show that sign≤(α) ∈

2nZ.
(5) Let K/Q be an algebraic field extension. When ι : K → R is an embed-

ding, show that ≤ι, defined by

a ≤ι b ⇔ ι(a) ≤ ι(b)

for all a, b ∈ K, is a field ordering. Conversely, for a field ordering ≤ on
K, show that

ι≤ : K → R : x 7→ inf{m
n
| m,n ∈ N, n 6= 0, nx ≤ m}

defines an embedding of fields. Conclude that there is a bijection between
the set of field orderings on K and the set of embeddings of K into R.

(6) Let L = K(X). Show that every anisotropic quadratic form over K
remains anisotropic over L.

(7) Prove Corollary 6.2.10.
(8) Let (V, q) be a quadratic space and d ∈ K× such that qK(

√
d) is hyperbolic.

Show that −d ∈ GK(q).
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