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Notations and conventions. We denote by N the set of natural numbers. We
write N+ for the proper subset of non-zero numbers. For a ring R, we denote by
R× the set of invertible elements of R; if R is a field, then R× = R \ {0}. We will
denote the set of prime numbers by P.

Acknowledgements. The first part of the course (lectures 1–5) follows to a
large extent the exposition from Lam’s book [Lam05]. For this introductory
course, we focus on fields of characteristic different from 2, where the theory of
quadratic forms is simpler than over fields of characteristic 2. The book of Elman,
Karpenko and Merkurjev [EKM08] is a great reference for those who want to learn
more about quadratic form theory over fields of arbitrary characteristic, and
some parts of this course which hold in arbitrary characteristic, are inspired by
their work. I thank Ruben de Preter for helpful feedback on the previous year’s
lecture notes. Finally, I gratefully acknowledge the inspiration taken from the
course “Quadratic Forms” taught by Karim Johannes Becher at the University
of Antwerp in Belgium, which has to a large extent shaped my vision on modern
quadratic form theory.

The second part of the course (lectures 6–10) was previously taught by B lażej
Żmija, and I have taken inspiration from his classes and lecture notes, as well
as exercises, for which he claims inspiration from Gerstein’s book [Ger08]. The
proof of the Hasse-Minkowski Theorem in particular is inspired in turn by a note
of Hatley [Hat09].

1. Lecture 1

1.1. Bilinear and quadratic forms. Let always K be a field, n ∈ N.

1.1.1. Definition. A symmetric bilinear space over K is a pair (V,B) where

• V is a finite-dimensional vector space over K, and
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• B : V × V → K is a symmetric and bilinear map, i.e. for all x, x′, y ∈ V
and a ∈ K we have

B(x, y) = B(y, x),

B(x + x′, y) = B(x, y) + B(x′, y),

B(ax, y) = aB(x, y).

We call the map B a symmetric bilinear form on V . We define the dimension of
(V,B) to be the dimension of V , and denote this by dim(V,B) or simply dimB.

Let n = dim(V,B). Given a basis B = (e1, . . . , en) of V , we define MB(B) =
[B(ej, ei)]

n
i,j=1, which we call the matrix of (V,B) with respect to B.

1.1.2. Proposition. Let V = Kn and let B = (e1, . . . , en) be the canonical basis.
Let B be a symmetric bilinear form on V . For column vectors x = [x1 . . . xn]T

and y = [y1, . . . , yn]T we have

B(x, y) = xTMB(B)y.

Proof. This is clear from the bilinearity of B. □

1.1.3. Definition. A quadratic space over K is a pair (V, q) where

• V is a finite-dimensional vector space over K, and
• q : V → K is a map satisfying the following:

(1) ∀a ∈ K, ∀x ∈ V : q(ax) = a2q(x),
(2) the map

bq : V × V → K : (x, y) 7→ q(x + y) − q(x) − q(y)

is a symmetric bilinear form on V .

We call the map q a quadratic form on V , and bq its polar form. We define the
dimension of (V, q) to be the dimension of V , and denote this by dim(V, q) or
simply dim q.

1.1.4. Definition. Let (V,B) and (V ′, B′) be symmetric bilinear spaces over
K. An isomorphism of K-vector spaces I : V → V ′ is called an isometry be-
tween (V,B) and (V ′, B′) if, for all v, w ∈ V , one has B(v, w) = B′(I(v), I(w)).
Similarly, given quadratic spaces (V, q) and (V ′, q′) over K, an isomorphism of
K-vector spaces I : V → V ′ is called an isometry between (V, q) and (V ′, q′) if,
for all v ∈ V , one has q(v) = q′(I(v)).

We call two symmetric bilinear spaces (V,B) and (V,B′) (respectively two
quadratic spaces (V, q) and (V ′, q′)) isometric, which we denote by (V,B) ∼=
(V ′, B′) (respectively (V, q) ∼= (V ′, q′)) if there exists an isometry between them.

Traditionally, a quadratic form over K is often defined to be a homogeneous
polynomial of degree 2 over K. Definition 1.1.3 can be seen as a coordinate-free
version of this, as the following proposition indicates.
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1.1.5. Proposition. Let n ∈ N and let f ∈ K[X1, . . . , Xn] be a homogeneous
polynomial of degree 2. The map

qf : Kn → K : (x1, . . . , xn) 7→ f(x1, . . . , xn)

is a quadratic form on Kn.
Conversely, given a quadratic space (V, q) of dimension n, there exists a ho-

mogeneous degree 2 polynomial f ∈ K[X1, . . . , Xn] such that (V, q) is isometric
to (Kn, qf ).

Proof. For the first part of the statement, one verifies that the defined map sat-
isfies the conditions stated in Definition 1.1.3.

The second part of the statement is left as an exercise. □

1.1.6. Proposition. Let f, g ∈ K[X1, . . . , Xn] be homogeneous polynomials of
degree 2. The quadratic spaces (Kn, qf ) and (Kn, qg) are isometric if and only if
there exists C ∈ GLn(K) such that

f
(

[x1 . . . xn]T
)

= g
(
([x1 . . . xn]C)T

)
for all x1, . . . , xn ∈ K.

Proof. Exercise. □

1.1.7. Example. Suppose char(K) ̸= 2. Let f(X1, X2) = X1 ·X2 and g(X1, X2) =
X2

1 −X2
2 . We observe that

g

(
X1 + X2

2
,
X1 −X2

2

)
= f(X1, X2)

and thus, in view of Proposition 1.1.6, that (K2, qf ) ∼= (K2, qg), with

C =

[
1
2

1
2

1
2

−1
2

]
.

We saw that, to a quadratic form q, one can associate a symmetric bilinear
form bq on the same space. It is also possible to obtain a quadratic form from a
symmetric bilinear form: if (V,B) is a symmetric bilinear space, then

qB : V → K : v 7→ B(v, v)

is easily seen to be a quadratic form. If char(K) ̸= 2, then these two operations
are each others inverses (up to scaling by 1

2
), and hence the studies of quadratic

and symmetric bilinear forms over K are essentially the same:

1.1.8. Proposition. Assume char(K) ̸= 2. Let (V, q) be a quadratic space. Then
q is equal to the quadratic form associated to the form 1

2
bq. Conversely, if (V,B)

is a symmetric bilinear space, then B is equal to 1
2
bq where q = qB.

Proof. This is a straightforward computation. □
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Over fields of characteristic 2, one can still associate to each quadratic form a
symmetric bilinear form and to each symmetric bilinear form a quadratic form
as before, but these operations are not invertible. In fact, one needs to make an
entirely separate study of quadratic and symmetric bilinear forms! We refer the
interested reader to [EKM08, Chapters I and II].

We now go on to study basic properties of quadratic forms.

1.1.9. Definition. Let (V, q) be a quadratic space over K.

• We call q isotropic if there exists v ∈ V \ {0} such that q(v) = 0, or
anisotropic otherwise.

• Given a ∈ K×, we say that q represents a if ∃v ∈ V with a = q(v). We
write

DK(q) = {a ∈ K× | ∃v ∈ V : a = q(v)}.
If DK(q) = K×, we say that q is universal .

1.1.10. Examples.

(1) Let f(X1, X2) = X1 ·X2. Then qf is isotropic, since f(1, 0) = 0. qf is also
universal, since, f(1, a) = a for any a ∈ K×.

(2) Let f(X1, X2) = X2
1 + X2

2 . qf is isotropic if and only if −1 is a square in
K. DK(qf ) is the set of elements of K which are a sum of two squares.

(3) Let f(X1, X2) = (X1 + X2)
2. Then qf is isotropic since f(1,−1) = 0.

DK(qf ) consists of those elements of K which are squares.

The last example is somewhat peculiar: the quadratic form qf with f(X1, X2) =
(X1 +X2)

2 is of dimension 2, but after a base change, one of the variables disap-
pears. Indeed,

f (X1 −X2, X2) = X2
1 .

We will often want to exclude from our study quadratic forms which have this
property.

For a K-vector space V , we denote by V ∗ the dual space, i.e. the space of linear
maps V → K. Recall that dim(V ∗) = dim(V ).

1.1.11. Proposition. Let (V,B) be a symmetric bilinear space. Let B be a basis
for V . The following are equivalent.

(a) ∀v ∈ V \ {0}, ∃w ∈ V : B(v, w) ̸= 0,
(b) The map V → V ∗ : v 7→ (w 7→ B(v, w)) is a K-isomorphism.
(c) The matrix MB(B) is invertible.

Proof. Exercise. □

1.1.12. Definition. We call a symmetric bilinear space (V,B) nonsingular if the
above equivalent conditions hold. We call a quadratic space (V, q) nonsingular if
its polar form is nonsingular. Otherwise, we call the space singular. We use the
same terminology for the symmetric bilinear and quadratic forms themselves.
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We now show that, at least over fields of characteristic not 2, singular forms
are precisely those for which, after a base change, one of the variables disappears.

1.1.13. Proposition. Let (V, q) be a quadratic space over K and v ∈ V . Consider
the statements

(a) bq(v, w) = 0 for all w ∈ V ,
(b) for all w ∈ V we have q(w + v) = q(w).

We have that (b) ⇒ (a) in general. If char(K) ̸= 2, then (a) and (b) are
equivalent.

In particular, it follows that, if char(K) ̸= 2, a quadratic space (V, q) is singular
if and only if there exists v ∈ V \ {0} such that for all w ∈ V we have q(w+ v) =
q(w).

Proof. If (b) holds, then q(v) = q(v + 0) = q(0) = 0, whence for any w ∈ V we
have bq(v, w) = q(v + w) − q(v) − q(w) = 0.

Now assume that char(K) ̸= 2 and (a) holds. Then in particular 0 = bq(v, v) =
2q(v) and thus q(v) = 0. It follows that, for any w ∈ V , we have q(v + w) =
q(v) + q(w) + bq(v, w) = q(v), so (b) holds. □

If char(K) ̸= 2, a nonsingular quadratic form over K is also called regular or
nondegenerate. Note that, if char(K) = 2, these terms have more specialised,
distinct meanings.

1.1.14. Remark. So far, I have been somewhat careful in making the distinction be-
tween a symmetric bilinear/quadratic space and a symmetric bilinear/quadratic
form. This makes notation and speaking somewhat heavy. I will in the future of-
ten simply refer to the forms themselves, taking the convention that a symmetric
bilinear/quadratic space ‘knows’ its domain.

1.2. Orthogonality and diagonalisation.

1.2.1. Definition. Let (V,B) be a symmetric bilinear space. Let v, w ∈ V . We
say that v and w are orthogonal (with respect to B) if B(v, w) = 0. We write
v ⊥ w.

Let v ∈ V and M ⊆ V . We say that v is orthogonal to M (with respect to B)
if B(v, w) = 0 for all w ∈ M . We write v ⊥ M . Similarly, given M ′ ⊆ V , we say
that M is orthogonal to M ′ (with respect to B) if B(v, w) = 0 for all v ∈ M and
w ∈ M ′, and write M ⊥ M ′.

We write

M⊥ = {v ∈ V | ∀w ∈ M : B(v, w) = 0}
and call it the orthogonal space of M - note that it is always a subspace of V .
We write v⊥ instead of {v}⊥.

If U ⊆ V is a subspace and V = U⊕U⊥, we call U⊥ an orthogonal complement
of U in V .
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Observe that a symmetric bilinear space (V,B) is by definition nonsingular if
and only if V ⊥ = {0}.

1.2.2. Proposition. Let (V,B) be nonsingular, U ⊆ V a subspace. Then

dimU + dimU⊥ = dimV and (U⊥)⊥ = U.

Proof. Consider the K-linear maps

φ1 : U⊥ → V ∗ : v 7→ (w 7→ B(v, w))

φ2 : V ∗ → U∗ : f 7→ f |U .

We observe that φ1 is injective by the nonsingularity of (V,B), that φ2 is surjec-
tive, and that the image of φ1 is precisely the kernel of φ2 by definition of U⊥.
As such, we compute that

dimV = dimV ∗ = dim(Kerφ2) + dim(Imφ2)

= dim(Imφ1) + dimU∗ = dim(U⊥) + dim(U)

as desired.
For the second statement, observe that we trivially have U ⊆ (U⊥)⊥, but that,

by the first claim, dim(U) = dim((U⊥)⊥), whence U = (U⊥)⊥ as desired. □

We now define an operation on the set of quadratic spaces over K.

1.2.3. Proposition. Let (V1, q1) and (V2, q2) be quadratic spaces over K. Let
V = V1 × V2 and consider the map

q : V → K : (x, y) 7→ q1(x) + q2(y).

Furthermore, consider the natural embeddings ι1 : V1 → V : x 7→ (x, 0) and
ι2 : V2 → V : x 7→ (0, x). We have that (V, q) is a quadratic space, and q is
nonsingular if and only if both q1 and q2 are. Furthermore, i1(V1) ⊥ i2(V2) with
respect to bq.

Proof. Easy verification. □

1.2.4. Definition. Let (V1, q1) and (V2, q2) be quadratic spaces over K. We call
the space (V, q) defined in Proposition 1.2.3 the orthogonal sum of (V1, q1) and
(V2, q2) and we denote the form q by q1 ⊥ q2.

1.2.5. Proposition. Let (Vi, qi) and (V ′
i , q

′
i) be quadratic spaces for i = 1, 2, 3.

We have the following computation rules:

• dim(q1 ⊥ q2) = dim(q1) + dim(q2).
• q1 ⊥ q2 ∼= q2 ⊥ q1, and q1 ⊥ (q2 ⊥ q3) ∼= (q1 ⊥ q2) ⊥ q3.
• If q1 ∼= q′1 and q2 ∼= q′2, then q1 ⊥ q′1

∼= q2 ⊥ q′2.

Proof. Easy verifications. □
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1.2.6. Proposition. Let (V, q), (V1, q1) and (V2, q2) be quadratic spaces over K.
Then q ∼= q1 ⊥ q2 if and only if there are K-subspaces W1 and W2 of V with
W1 ⊥ W2 with respect to bq, V = W1 ⊕ W2, and such that (Wi, q|Wi

) ∼= (Vi, qi)
for i = 1, 2.

Proof. Suppose that ι is an isomorphism q1 ⊥ q2 → q and let W1 and W2 be the
images under this isomorphism of V1×{0} and {0}×V2 respectively. One verifies
easily that these are as desired.

Conversely, assume that W1 and W2 are subspaces of V with W1 ⊥ W2,
V = W1 ⊕ W2, and such that (Wi, q|Wi

) ∼= (Vi, qi) for i = 1, 2. Without loss
of generality, we may assume that Vi = Wi and qi = q|Wi

. Let ι be the unique
K-linear map V → V1 × V2 which maps a vector w ∈ W1 to (w, 0) and a vector
w ∈ W2 to (0, w). Clearly this is an isomorphism of K-vector spaces. Consider an
arbitrary vector in V , which we may write as w1 +w2 for w1 ∈ W1 and w2 ∈ W2.
Since W1 ⊥ W2, we have that bq(w1, w2) = 0. We compute that

q(w1 + w2) = q(w1) + q(w2) + bq(w1, w2) = q(w1) + q(w2)

= q1(w1) + q2(w2) = (q1 ⊥ q2)(w1, w2) = (q1 ⊥ q2)(ι(w1 + w2)).

Hence ι is the desired isometry. □

We now discuss a special class of quadratic forms called diagonal forms. As it
will turn out, in characteristic different from 2, every quadratic form is isometric
to a diagonal form (see Corollary 1.2.10).

1.2.7. Definition. Let a1, . . . , an ∈ K. We denote by ⟨a1, . . . , an⟩K the quadratic
form

Kn → K : (x1, . . . , xn) 7→
n∑

i=1

aix
2
i .

We call such a form a diagonal form. If the field K is clear from the context we
might simply write ⟨a1, . . . , an⟩ instead of ⟨a1, . . . , an⟩K .

Note that ⟨a1, . . . , an⟩K ∼= ⟨a1⟩K ⊥ . . . ⊥ ⟨an⟩K .

1.2.8. Proposition. Let n ∈ N and a1, . . . , an ∈ K, let q = ⟨a1, . . . , an⟩. If
char(K) ̸= 2, then q is singular if and only if ai = 0 for some i ∈ {1, . . . , n⟩. If
char(K) = 2, then q is singular as soon as n ≥ 2.

Proof. Exercise. □

1.2.9. Proposition. Assume char(K) ̸= 2. Let (V, q) be a quadratic space over
K, d ∈ K×. Then d ∈ DK(q) if and only if q ∼= ⟨d⟩ ⊥ (V ′, q′) for some quadratic
space (V ′, q′).

Proof. Clearly d = d · 12 + q′(0) ∈ DK(⟨d⟩ ⊥ (V ′, q′)) for any quadratic space
(V ′, q′).

Conversely, assume that d ∈ DK(q). Let W be any subspace of V such that
V = V ⊥ ⊕W . Then (W, q|W ) is nonsingular, and, in view of Proposition 1.1.13,
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we have DK(q|W ) = DK(q). We may thus restrict our quadratic form to W , and
assume without loss of generality that q is nonsingular.

Now take v ∈ V with q(v) = d. Set U = v⊥. We have v ̸∈ v⊥ (since bq(v, v) =
2d ̸= 0) and dim(U) = dim(V ) − 1 by Proposition 1.2.2, hence V = Kv ⊕ U .
Clearly q|Kv

∼= ⟨d⟩, so q ∼= ⟨d⟩ ⊥ (U, q|U) in view of Proposition 1.2.6. □

1.2.10. Corollary. Assume char(K) ̸= 2, let (V, q) be a quadratic space over K
of dimension n. Then there exist a1, . . . , an ∈ K such that q ∼= ⟨a1, . . . , an⟩.

Proof. Apply Proposition 1.2.9 inductively. □

1.3. Exercises.

(1) Complete the proofs of Proposition 1.1.5, Proposition 1.1.6, Proposi-
tion 1.1.11 and Proposition 1.2.8.

(2) Illustrate by an example that the implication (a) ⇒ (b) in Proposi-
tion 1.1.13 does not hold in general if char(K) = 2.

(3) Consider the quadratic form on Q3 given by the following polynomial:

f(X1, X2, X3) = 3X2
1 + 6X1X2 + 3X2

2 −X2X3.

Explicitly construct a diagonal quadratic form q on Q3 such that (Q3, qf ) ∼=
(Q3, q).

2. Lecture 2

Let always K be a field.

2.0.1. Definition. Let (V, q) be a quadratic space. If W is a subspace of V , the
quadratic space (W, q|W ) is called a subform of (V, q). By abuse of terminology,
we will also call a quadratic space (U, q′) which is isometric to (W, q|W ) for some
subspace W of V a subform of (V, q).

In this lecture, we will get closer to a classification of quadratic spaces over
a given field, by decomposing quadratic spaces as orthogonal sums of subforms
with specific properties.

2.1. Isotropic, totally isotropic, and hyperbolic forms. Recall from Defi-
nition 1.1.9 the definition of an isotropic quadratic form.

2.1.1. Definition. Let (V, q) be a quadratic space. We call (V, q) totally isotropic
if q(v) = 0 for all v ∈ V . If W is a subspace of V , we call W totally isotropic if
(W, q|W ) is totally isotropic.

Observe that a non-zero totally isotropic space is always singular.

2.1.2. Proposition. Assume char(K) ̸= 2. Let (V, q) be a quadratic space. Then
the map

q : V/V ⊥ → K : v 7→ q(v)

is a well-defined nonsingular quadratic form.



10 NICOLAS DAANS

Proof. The well-definedness follows from the fact that, for v ∈ V and w ∈ V ⊥,
one has q(v + w) = q(v) by Proposition 1.1.13. It is then easy to verify that the
map is a quadratic form.

For the nonsingularity, consider v ∈ V such that v ̸= 0, i.e. v ̸∈ V ⊥. Then
there exists w ∈ V with 0 ̸= bq(v, w) = bq(v, w), whereby v ̸∈ (V/V ⊥)⊥. Hence
(V/V ⊥)⊥ = {0}, and thus (V/V ⊥, q) is nonsingular. □

The following observation was already used implicitly in the proof of Proposi-
tion 1.2.9.

2.1.3. Proposition. Assume char(K) ̸= 2. Let (V, q) be a quadratic space. Let
W be an orthogonal complement of V ⊥. We have that

(V, q) ∼= (V ⊥, q|V ⊥) ⊥ (W, q|W ),

that (V ⊥, q|V ⊥) is totally isotropic, and that (W, q|W ) ∼= (V/V ⊥, q).

Proof. The first isometry is immediate form Proposition 1.2.6. The fact that
(V ⊥, q|V ⊥) is totally isotropic follows from Proposition 1.1.13.

Finally, consider the map

ι : W → V/V ⊥ : w 7→ w.

Since W ∩V ⊥ = {0} we have that ι is injective, hence by comparing dimensions,
ι is bijective. Furthermore, by definition we have for w ∈ W that q(w) = q(w) =
q(ι(w)). Hence we have obtained the required isometry (W, q|W ) ∼= (V/V ⊥, q).

□

We can thus, in characteristic away from 2, decompose any quadratic space
into the orthogonal sum of a totally isotropic space and a nonsingular space, and
this decomposition is unique up to isometry.

We now want to study nonsingular isotropic forms. Nonsingular one-dimensional
quadratic forms are always anisotropic.

2.1.4. Definition. We call the quadratic form (K2, qf ) with f(X1, X2) = X1 ·X2

the hyperbolic plane over K and denote it by HK .

2.1.5. Proposition. Let (V, q) be a nonsingular quadratic space over K. Let
v ∈ V \ {0} such that q(v) = 0. Then there is a subspace W ⊆ V with v ∈ W
such that (W, q|W ) is isometric to HK.

Proof. Since (V, q) is nonsingular, there exists w ∈ V such that a = bq(v, w) ̸= 0.
We may replace w by a−1w and assume without loss of generality that a = 1.
Observe that w ̸∈ Kv, so that W = Kv ⊕Kw is a 2-dimensional subspace of V .
Consider the map

ι : K2 → W : (x, y) 7→ xv + y(w − q(w)v).
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Clearly this is a K-isomorphism of vector spaces. We compute that, for x, y ∈ K,
we have

q(ι(x, y)) = q(xv + y(w − q(w)v))

= (x− yq(w))2q(v) + y2q(w) + bq((x− yq(w))v, yw)

= 0 + y2q(w) + (x− yq(w))ybq(v, w) = xy.

Hence (W, q|W ) ∼= HK . □

In particular, it follows from Proposition 2.1.5 that the hyperbolic plane is, up
to isometry, the only two-dimensional nonsingular isotropic quadratic form over
K. We also obtain the following

2.1.6. Corollary. Every nonsingular isotropic quadratic space is universal.

Proof. We know from Examples 1.1.10 that HK is universal. But by Proposi-
tion 2.1.5 every nonsingular isotropic quadratic space contains HK as a subspace,
hence is also universal. □

2.1.7. Corollary. Let (V, q) be a nonsingular quadratic space and d ∈ K×. We
have that d ∈ DK(q) if and only if q ⊥ ⟨−d⟩K is isotropic.

Proof. Exercise. □

2.1.8. Proposition. Let (V, q) be a nonsingular quadratic space, W a nonsingular
subspace of V . Then V = W ⊕W⊥, (V, q) ∼= (W, q|W ) ⊥ (W⊥, q|W⊥), and also
(W⊥, q|W⊥) is nonsingular.

Proof. Since (V, q) is nonsingular, we have dimW + dimW⊥ = dimV by Propo-
sition 1.2.2. Since (W, q |W ) is nonsingular, we further have W ∩ W⊥ = {0}.
Hence, we obtain V = W ⊕ W⊥, and the natural induced K-isomorphism
V → W × W⊥ gives the required isometry (V, q) ∼= (W, q|W ) ⊥ (W⊥, q|W⊥);
see Proposition 1.2.6.

Finally, since (W⊥)⊥ = W by Proposition 1.2.2, we obtain (W⊥)⊥ ∩ W⊥ =
W ∩W⊥ = {0}, whereby (W⊥, q|W⊥) is nonsingular. □

In the sequel, we will use the following notation: for a quadratic space (V, q)
and n ∈ N, we write

n× (V, q) = (V n, q ⊥ . . . ⊥ q︸ ︷︷ ︸
n times

).

We will denote the described quadratic form on V n simply by n× q. By conven-
tion, 0 × (V, q) denotes the unique zero-dimensional quadratic space over K.

2.1.9. Proposition. Let (V, q) be a nonsingular quadratic space, n ∈ N. The
following are equivalent.

(1) V contains a totally isotropic subspace of dimension n,
(2) V contains a subform isometric to n×HK.
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Proof. For n = 0 there is nothing to show, assume from now on that n ≥ 1.
Assume (2). Then V has subspaces W1, . . . ,Wn such that Wi ⊥ Wj and Wi ∩

Wj = {0} for any i ̸= j and such that (Wi, q|Wi
) ∼= HK . Let wi ∈ Wi \ {0} be

such that q(wi) = 0. Then Kw1⊕ . . .⊕Kwn is an n-dimensional totally isotropic
subspace of V .

Conversely, assume (1). We argue via induction on n - recall that the case
n = 0 is covered, so we assume n ≥ 1. Let W be a totally isotropic subspace of
V of dimension n and let v ∈ W \ {0}. By Proposition 2.1.5 there exists w ∈ V
such that, for W ′ = Kv ⊕Kw, we have (W ′, q|W ′) ∼= HK . By Proposition 2.1.8
this implies that (V, q) ∼= HK ⊥ (U, q|U) for U = (W ′)⊥, and furthermore (U, q|U)
is nonsingular. Further, since W ⊆ v⊥, we have

U ∩W = (W ′)⊥ ∩W = v⊥ ∩ w⊥ ∩W = w⊥ ∩W

whereby dim(U∩W ) ≥ n−1. Hence (U, q|U) contains a totally isotropic subspace
U∩W of dimension n−1. The statement now follows by the induction hypothesis.

□

2.1.10. Corollary. Let (V, q) be a nonsingular quadratic space of dimension 2n,
where n ∈ N. The following are equivalent.

(1) V contains a totally isotropic subspace of dimension n,
(2) (V, q) ∼= n×HK.

2.1.11. Definition. We say that a nonsingular quadratic space of dimension 2n
(for some n ∈ N) is hyperbolic if it contains a totally isotropic subspace of dimen-
sion n.

Given a quadratic space (V, q), we define the Witt index of (V, q) to be the
maximal possible dimension of a totally isotropic subspace W of (V, q) with V ∩
W = {0}. We denote it by iW (V, q), or simply iW (q). If char(K) ̸= 2, iW (V, q) is
also the maximal possible dimension of a totally isotropic subspace of V/V ⊥.

2.1.12. Proposition. Let (V, q) be a nonsingular quadratic space. Then (V, q) ⊥
(V,−q) is hyperbolic.

Proof. Let n = dimV . Then dim(V × V ) = 2n. Let W = {(v, v) ∈ V × V | v ∈
V }. Then W is a subspace of V × V of dimension n, and it is a totally isotropic
subspace of (V, q) ⊥ (V,−q), since for any v ∈ V we have (q ⊥ −q)(v, v) =
q(v) − q(v) = 0.

Since (V, q) ⊥ (V,−q) is nonsingular (by Proposition 1.2.3) and has a totally
isotropic subspace of dimension n, it is hyperbolic. □

2.2. Witt’s Theorems. We are now in a position to prove the two most impor-
tant structure theorems on quadratic forms, named after Ernst Witt. We will
prove them, as Witt did in the 1930’ies, under the assumption that char(K) ̸= 2.
Versions in characteristic 2 exist and can be proven with extra assumptions and
a lot more work, see [EKM08, Section 8].
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2.2.1. Lemma. Assume that char(K) ̸= 2. Let (V, q) be a quadratic space, and
let v, w ∈ V be such that q(v) = q(w) ̸= 0. There exists an isometry τ : (V, q) →
(V, q) such that τ(x) = y.

Proof. One computes that q(v + w) + q(v − w) = 4q(v) ̸= 0, so at least one of
q(v + w) and q(v − w) is non-zero. Replacing w by −w if necessary, we may
assume that q(v − w) ̸= 0. Now consider the map

τ : V → V : u 7→ u− bq(u, v − w)

q(v − w)
(v − w).

One verifies that τ gives an isometry (V, q) → (V, q), and that τ(v) = w, as
desired; see Exercise (2). □

2.2.2. Theorem (Witt Cancellation Theorem). Assume char(K) ̸= 2. Let (V, q),
(V1, q1) and (V2, q2) be quadratic spaces. If (V, q) ⊥ (V1, q1) ∼= (V, q) ⊥ (V2, q2),
then (V1, q1) ∼= (V2, q2).

Proof. We first reduce to the case where all involved quadratic spaces are nonsin-
gular. To this end, use Proposition 2.1.3 to write (V, q) ∼= (V ⊥, q|V ⊥) ⊥ (W, q|W ),
(V1, q1) ∼= (V ⊥

1 , q1|V ⊥
1

) ⊥ (W1, q|W1) and (V2, q2) ∼= (V ⊥
2 , q2|V ⊥

2
) ⊥ (W2, q|W2)

where q|W , q1|W1 and q2|W2 are nonsingular. The hypothesis can be rewritten as

((V ⊥ V1)
⊥, (q ⊥ q1)|(V⊥V1)⊥) ⊥ (W ⊥ W1, (q ⊥ q1)|W⊥W1)

∼= ((V ⊥ V2)
⊥, (q ⊥ q2)|(V⊥V2)⊥) ⊥ (W ⊥ W2, (q ⊥ q2)|W⊥W2),

using that V ⊥ ⊥ V ⊥
1 = (V ⊥ V1)

⊥ and similarly V ⊥ ⊥ V ⊥
2 = (V ⊥ V2)

⊥. We
further have by Proposition 1.2.3 that (W ⊥ W1, (q ⊥ q1)|W⊥W1) and (W ⊥
W2, (q ⊥ q2)|W⊥W2) are nonsingular. In view of Proposition 2.1.3 we have

(W ⊥ W1, (q ⊥ q1)|W⊥W1)
∼= ((V ⊥ V1)/(V ⊥ V1)

⊥, q ⊥ q1)

∼= ((V ⊥ V2)/(V ⊥ V2)
⊥, q ⊥ q2) ∼= (W ⊥ W2, (q ⊥ q2)|W⊥W2),

We conclude that we may assume for the remainder of the proof that (V, q),
(V1, q1) and (V2, q2) are nonsingular.

By Corollary 1.2.10 we may assume that (V, q) ∼= ⟨a1, . . . , an⟩ for some a1, . . . , an ∈
K×. By inducting on n, we reduce to the situation n = 1. Let ι : ⟨a⟩K ⊥
(V1, q1) → ⟨a⟩K ⊥ (V2, q2) be an isometry. Let v = ι(1, 0). We have (⟨a⟩K ⊥
q2)(v) = (⟨a⟩K ⊥ q1)(1, 0) = a · 12 = a = (⟨a⟩K ⊥ q2)(1, 0).

By Lemma 2.2.1 there exists an isometry τ : ⟨a⟩K ⊥ (V2, q2) → ⟨a⟩K ⊥ (V2, q2)
with τ(v) = (1, 0). Thus, τ ◦ ι gives an isometry ⟨a⟩K ⊥ (V1, q1) → ⟨a⟩K ⊥
(V2, q2) mapping (1, 0) to (1, 0). Furthermore, since (K × {0}) ⊥ ({0} × V1) (in
(K×V1, ⟨a⟩K ⊥ q1)) and isometries preserve orthogonality, we obtain (K×{0}) ⊥
(τ ◦ ι)({0} × V1) (in (K × V2, ⟨a⟩K ⊥ q2)). So, we must have (τ ◦ ι)({0} × V1) =
{0} × V2, whereby τ ◦ ι induces an isometry (V1, q1) → (V2, q2), as desired. □
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2.2.3. Theorem (Witt Decomposition Theorem). Assume char(K) ̸= 2. Let
(V, q) be a quadratic space. There exist quadratic spaces (Vt, qt), (Vh, qh) and
(Va, qa) such that

(V, q) ∼= (Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa)

where

• (Vt, qt) is totally isotropic,
• (Vh, qh) is hyperbolic (or zero),
• (Va, qa) is anisotropic.

Furthermore, each of these spaces is determined up to isometry by (V, q). In fact,
(Vt, qt) is the unique totally isotropic space of dimension dimV ⊥, and (Vh, qh) is
the unique hyperbolic space of dimension 2iW (q).

Proof. We first prove the existence of the required spaces. By Proposition 2.1.3 we
can write (V, q) ∼= (Vt, qt) ⊥ (V ′, q′) where (Vt, qt) is totally isotropic of dimension
dimV ⊥ and (V ′, q′) is nonsingular. Let m = iW (V, q). By Proposition 2.1.9
and Proposition 2.1.8 we can write (V ′, q′) ∼= (Vh, qh) ⊥ (Va, qa) where (Vh, qh)
is hyperbolic of dimension 2m. (Va, qa) must be nonsingular, and in fact it is
anisotropic, since otherwise one could find a totally isotropic subspace of (V ′, q′)
of dimension m + 1, contradicting the choice of m. This concludes the existence
part of the proof.

For the uniqueness, assume that

(V, q) ∼= (Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa) ∼= (V ′
t , q

′
t) ⊥ (V ′

h, q
′
h) ⊥ (V ′

a, q
′
a)

where (V ′
t , q

′
t) is totally singular, (V ′

h, q
′
h) is hyperbolic, and (V ′

a, q
′
a) is anisotropic.

Since (V ′
t , q

′
t) is totally isotropic and (V ′

h, q
′
h) ⊥ (V ′

a, q
′
a) is nonsingular, we must

have
dimV ′

t = dimV ⊥ = dimVt.

Since (Vt, qt) and (V ′
t , q

′
t) are totally isotropic of the same dimension, they must

be isometric. By Theorem 2.2.2 we obtain that (Vh, qa) ⊥ (Va, qa) ∼= (V ′
h, q

′
h) ⊥

(V ′
a, q

′
a). Similarly, since (V ′

h, q
′
h) is hyperbolic and (V ′

a, q
′
a) is anisotropic, we must

have dimV ′
h = 2m = dimVh, whereby (Vh, qh) and (V ′

h, q
′
h) are hyperbolic forms of

the same dimension and hence isometric. Finally, applying Theorem 2.2.2 again,
we obtain (Va, qa) ∼= (V ′

a, q
′
a). □

2.3. Exercises.

(1) Complete the proof of Corollary 2.1.7.
(2) Let (V, q) be a quadratic space, and consider for v ∈ V with q(v) ̸= 0 the

map

τv : V → V : w 7→ w − bq(w, v)

q(v)
v.

Show the following for any v ∈ V with q(v) ̸= 0:
(a) τv is an isometry (V, q) → (V, q),
(b) τv(v) = −v, and for w ∈ v⊥ we have τv(w) = w,
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(c) If w ∈ V is such that q(v) = q(w) and q(v−w) ̸= 0, then τv−w(v) = w.
(3) Show that the following are equivalent for a field K with char(K) ̸= 2:

(a) Any two nonsingular quadratic spaces over K of the same dimension
are isometric.

(b) Every element of K is a square.
(4) Let (V, q) be a nonsingular isotropic space. Show that V has a basis

consisting of isotropic vectors.
(5) Let (V, q) be a nonsingular quadratic space, set n = dimV and m = iW (q).

Show that every subform of (V, q) of dimension greater than n − m is
isotropic.

(6) Assume char(K) ̸= 2 and let (V1, q1) and (V2, q2) be nonsingular quadratic
spaces over K. Show that (V2, q2) is a subform of (V1, q1) if and only if
iW ((V1, q1) ⊥ (V2,−q2)) ≥ dimV2.

(7) Let K = F2, the field with two elements. Consider the quadratic form

q : K2 → K : (x, y) 7→ x2 + xy + y2.

Show that q ⊥ ⟨1⟩K ∼= HK ⊥ ⟨1⟩K , but q ̸∼= HK . Conclude that Theo-
rem 2.2.2 does not hold as stated without the assumption char(K) ̸= 2.

3. Lecture 3

3.1. Tensor products of symmetric bilinear spaces. In this section, we will
define the tensor product (sometimes called Kronecker product) of two symmetric
bilinear spaces. First, we define the tensor product of two K-vector spaces.

Let V and W be K-vector spaces. Denote by K(V×W ) the free K-vector space
over the set V × W . That is, for each (v, w) ∈ V × W we fix an element
e(v,w) ∈ K(V×W ), and then {e(v,w) | (v, w) ∈ V ×W} is a basis of K(V×W ). Let A

be the subspace of K(V×W ) generated by elements of the form

e(v+av′,w) − e(v,w) − ae(v′,w) or e(v,w+aw′) − a(v,w) − ae(v,w′)

for v, v′ ∈ V , w,w′ ∈ W and a ∈ K.

3.1.1. Definition. With the notations from above, we call the quotient space
K(V×W )/A the tensor product of V and W , which we denote by V ⊗ W - or
V ⊗K W if we want to stress the underlying field. For v ∈ V and w ∈ W we
denote by v ⊗ w the class of e(v,w) in this quotient space. We call an element of
V ⊗K W of the form v ⊗ w for v ∈ V and w ∈ W an elementary tensor .

3.1.2. Remark. Be careful! Not every element of V ⊗W is of the form v ⊗ w for
v ∈ V and w ∈ W , i.e. not every element of V ⊗ W is an elementary tensor.
However, every element of V ⊗W is a sum of elementary tensors - although this
decomposition is not unique.

The tensor product V ⊗ W is best understood through the following funda-
mental property.
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3.1.3. Proposition (Universal property of tensor products). Let V and W be
K-vector spaces. The map V ×W → V ⊗W : (v, w) 7→ v ⊗w is a bilinear map,
and its image generates V ⊗W .

For any K-vector space U and any bilinear map B : V ×W → U , there exists
a unique linear map B : V ⊗W → U such that B(v, w) = B(v⊗w) for all v ∈ V ,
w ∈ W .

Proof. The bilinearity of the map V ×W → V ⊗W : (v, w) 7→ v⊗w follows from
the construction of V ⊗W : we have for any v1, v2 ∈ V , w1, w2 ∈ W and a, b ∈ K
that

(v1 + av2) ⊗ (w1 + bw2) = (v1 ⊗ w1) + a(v2 ⊗ w1) + b(v1 ⊗ w2) + ab(v2 ⊗ w2).

The image of the map consists of elementary tensors, which by construction
generate V ⊗W .

Now consider any bilinear map B : V ×W → U . Since {e(v,w) | (v, w) ∈ V ×W}
form a basis of K(V×W ), there is a unique K-linear map B̂ : K(V×W ) → U mapping
e(v,w) to B(v, w) for (v, w) ∈ V ×W . By the bilinearity of B, we compute that
for v1, v2 ∈ V and w1, w2 ∈ W we have

B̂(e(v1+av2,w1+bw2)) = B(v1 + av2, w1 + bw2)

= B(v1, w1) + aB(v2, w1) + bB(v1, w2) + abB(v2, w2)

= B̂(e(v1,w1) + ae(v2,w1) + be(v1,w2) + abe(v2,w2)).

As such, Ker(B̂) contains all elements given as generators for the subspace A

of K(V×W ), whereby A ⊆ Ker(B̂). Recalling that V ⊗ W = K(V×W )/A, we
conclude that there exists a unique linear map B : V ⊗ W → U such that
B(v ⊗ w) = B̂(e(v,w)) = B(v, w) for all (v, w) ∈ V ×W . □

3.1.4. Proposition. Let U , V and W be K-vector spaces. The tensor product
satisfies the following properties.

(1) There is a unique K-isomorphism V⊗W → W⊗V such that v⊗w 7→ w⊗v
for v ∈ V and w ∈ W .

(2) There is a unique K-isomorphism (U ⊗ V ) ⊗ W → U ⊗ (V ⊗ W ) such
that (u⊗ v) ⊗ w 7→ u⊗ (v ⊗ w) for u ∈ U , v ∈ V and w ∈ W .

(3) There is a unique K-isomorphism (U × V ) ⊗W → (U ⊗W ) × (V ⊗W )
such that ((u, v), w) 7→ ((u⊗ w), (v ⊗ w)) for u ∈ U , v ∈ V and w ∈ W .

(4) Let BV and BW be bases for V and W respectively. Then

{v ⊗ w | v ∈ BB, w ∈ BW}

is a basis for V ⊗W . In particular, dim(V ⊗W ) = dim(V ) dim(W ).

Proof. Each of these can be proven by making use of Proposition 3.1.3. □

We can now define the tensor product of symmetric bilinear spaces.
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3.1.5. Proposition. Let (V1, B1) and (V2, B2) be symmetric bilinear spaces. There
exists a unique K-bilinear form B on V1 ⊗ V2 such that

B(v1 ⊗ v2, w1 ⊗ w2) = B1(v1, w1) ·B2(v2, w2)

for all v1, w1 ∈ V1 and v2, w2 ∈ V2.

Proof. The uniqueness is clear, since V ⊗W is generated by elementary tensors;
furthermore, since such a bilinear map would by definition be symmetric on
elementary tensors, it is automatically symmetric. It thus suffices to show the
existence of such a bilinear map B.

Consider first for (v1, v2) ∈ V1 × V2 the map

V1 × V2 → K : (w1, w2) 7→ B1(v1, w1) ·B2(v2, w2).

This map is bilinear, hence by Proposition 3.1.3 induces a linear map B(v1,v2) :
V1⊗V2 → K such that B(v1,v2)(w1⊗w2) = B1(v1, w1) ·B2(v2, w2) for w1 ∈ V1 and
w2 ∈ V2. The map

B∗ : V1 × V2 → (V1 ⊗ V2)
∗ : (v1, v2) 7→ B(v1,v2)

is also bilinear, hence, again by Proposition 3.1.3, it induces a linear map B∗ :
V1 ⊗ V2 → (V1 ⊗ V2)

∗ such that B∗(v1 ⊗ v2) = B(v1,v2) for (v1, v2) ∈ V1 × V2.
Finally, consider the bilinear map

B : (V1 ⊗ V2) × (V1 ⊗ V2) : (α, β) 7→ B∗(α)(β).

We compute that, for v1, w1 ∈ V1 and v2, w2 ∈ V2, we have

B(v1 ⊗ v2, w1 ⊗ w2) = B∗(v1 ⊗ v2)(w1 ⊗ w2)

= B(v1,v2)(w1 ⊗ w2) = B1(v1, w1) ·B2(v2, w2).

Hence, B is as desired. □

3.1.6. Definition. Given symmetric bilinear spaces (V1, B1) and (V2, B2), we call
the symmetric bilinear space constructed in Proposition 3.1.5 the tensor product
of (V1, B1) and (V2, B2). We denote it by (V1 ⊗ V2, B1 ⊗B2).

Over fields of characteristic different from 2, we will also consider the ten-
sor product of quadratic spaces; this is by definition the quadratic space corre-
sponding to the tensor product of the underlying symmetric bilinear spaces, see
Proposition 1.1.8. That is, for quadratic spaces (V1, q1) and (V2, q2), we define

q1 ⊗ q2 : V1 ⊗ V2 → K : α 7→ (Bq1 ⊗Bq2)(α)

4
.

In the following proposition stating some computation rules, in the interest of
brevity, we represent a quadratic space just by its quadratic form.
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3.1.7. Proposition. Assume char(K) ̸= 2. For quadratic forms q1, q2, q3 over K
we have

q1 ⊗ q2 ∼= q2 ⊗ q1

(q1 ⊗ q2) ⊗ q3 ∼= q1 ⊗ (q2 ⊗ q3)

(q1 ⊥ q2) ⊗ q3 ∼= (q1 ⊗ q3) ⊥ (q2 ⊗ q3)

Proof. Each of these follows by checking that the isomorphism of vector spaces
established in Proposition 3.1.4 induces isometries of quadratic (/symmetric bi-
linear) spaces. □

3.1.8. Corollary. Assum char(K) ̸= 2. Letm,n ∈ N and let a1, . . . , am, b1, . . . , bn ∈
K. We have

⟨a1, . . . , am⟩K ⊗ ⟨b1, . . . bn⟩K ∼= ⟨a1b1, . . . , aibj, . . . , ambn⟩K
Proof. This follows by Proposition 3.1.7 and the easy observation that ⟨a⟩K ⊗
⟨b⟩K ∼= ⟨ab⟩K for a, b ∈ K. □

3.1.9. Corollary. Assume char(K) ̸= 2. Let (V1, q1), (V2, q2) be nonsingular qua-
dratic spaces. Then (V1 ⊗ V2, q1 ⊗ q2) is nonsingular.

Proof. By Corollary 1.2.10 and Proposition 1.2.8 both (V1, q1) and (V2, q2) are
isometric to diagonal forms where all entries are non-zero. By Corollary 3.1.8 the
same holds for (V1 ⊗ V2, q1 ⊗ q2), whence this form is also nonsingular. □

3.1.10. Corollary. Assume char(K) ̸= 2. Let (V, q) be a nonsingular quadratic
space. Then (V, q) ⊗HK is hyperbolic.

Proof. We have HK
∼= ⟨1,−1⟩K (see Example 1.1.7). Hence, by Proposition 3.1.7,

(V, q) ⊗HK
∼= (V, q) ⊗ ⟨1,−1⟩K ∼= (V, q) ⊥ (V,−q)

which is hyperbolic by Proposition 2.1.12. □

3.2. Exercises.

(1) Prove Proposition 3.1.4 and Proposition 3.1.7.

4. Lecture 4

4.1. Witt equivalence and the Witt ring. Throughout this subsection, all
quadratic spaces are consider over a fixed field K, and we assume char(K) ̸= 2.

4.1.1. Definition. Let (V (1), q(1)) and (V (2), q(2)) be quadratic spaces. In view of
Theorem 2.2.3 we may write

(V (1), q(1)) ∼= (V
(1)
t , q

(1)
t ) ⊥ (V

(1)
h , q

(1)
h ) ⊥ (V (1)

a , q(1)a )

(V (2), q(2)) ∼= (V
(2)
t , q

(2)
t ) ⊥ (V

(2)
h , q

(2)
h ) ⊥ (V (2)

a , q(2)a )

where
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• (V
(1)
t , q

(1)
t ) and (V

(2)
t , q

(2)
t ) are totally isotropic,

• (V
(1)
h , q

(1)
h ) and (V

(2)
h , q

(2)
h ) are hyperbolic (or zero),

• (V
(1)
a , q

(1)
a ) and (V

(2)
a , q

(2)
a ) are anisotropic.

We say that (V (1), q(1)) and (V (2), q(2)) are Witt equivalent if dimV
(1)
t = dimV

(2)
t

and (V
(1)
a , q

(1)
a ) ∼= (V

(2)
a , q

(2)
a ). We denote this by (V (1), q(1)) ≡ (V (2), q(2)).

Theorem 2.2.3 yields that this is indeed a well-defined equivalence relation on
the class of quadratic spaces over K. One has the following easy observations.

4.1.2. Proposition. Let (V1, q1) and (V2, q2) be quadratic spaces.

(1) (V1, q1) ∼= (V2, q2) if and only if (V1, q1) ≡ (V2, q2) and dimV1 = dimV2.
(2) In every Witt equivalence class, there is up to isometry a unique anisotropic

quadratic space. In particular, if (V1, q1) ≡ (V2, q2) and both are anisotropic,
then (V1, q1) ∼= (V2, q2).

For a quadratic space (V, q), let us denote by [(V, q)] its Witt equivalence class.
Let us denote by W (K) the set of equivalence classes of nonsingular quadratic
spaces up to Witt equivalence. We will see now that this set can naturally be
given a ring structure.

4.1.3. Theorem. The rules

⊥: W (K) ×W (K) → W (K) : ([(V1, q1)], [(V2, q2)]) → [(V1 × V2, q1 ⊥ q2)] and

⊗ : W (K) ×W (K) → W (K) : ([(V1, q1)], [(V2, q2)]) → [(V1 ⊗ V2, q1 ⊗ q2)]

are well-defined binary operations on W (K), making W (K) into a commutative
ring with addition ⊥ and multiplication ⊗. The class of the zero-dimensional
form [⟨⟩K ] is a neutral element for ⊥, and [⟨1⟩K ] is a neutral element for ⊗.
Given [(V, q)] ∈ W (K), its additive inverse is given by [(V,−q)].

Proof. We first prove the well-definedness. That is, assume (V1, q1), (V
′
1 , q

′
1), (V2, q2), (V2, q

′
2)

are such that (V1, q1) ≡ (V ′
1 , q

′
1) and (V2, q2) ≡ (V ′

2 , q
′
2), we need to show that

(V1 × V2, q1 ⊥ q2) ≡ (V ′
1 × V ′

2 , q
′
1 ⊥ q′2) and (V1 ⊗ V2, q1 ⊗ q2) ≡ (V ′

1 ⊗ V ′
2 , q

′
1 ⊗ q′2).

Since nonsingular quadratic spaces are Witt equivalent if and only if they are
isometric after adding a number of copies of the hyperbolic plane to one of them,
it suffices to consider the case (V1, q1) = (V ′

1 , q
′
1) and (V ′

2 , q
′
2) = (V2, q2) ⊥ HK .

We compute that

(V1, q1) ⊥ ((V2, q2) ⊥ HK) ∼= ((V1, q1) ⊥ (V2, q2)) ⊥ HK ≡ (V1, q1) ⊥ (V2, q2)

as desired. Similarly

(V1, q1) ⊗ ((V2, q2) ⊥ HK) ∼= (V1, q1) ⊗ (V2, q2) ⊥ (V1, q1) ⊗HK

∼= (V1, q1) ⊗ (V2, q2) ⊥ dim(V1) ×HK

≡ (V1, q1) ⊗ (V2, q2)
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where the second isometry follows from Corollary 3.1.10. This shows that the
operations ⊥ and ⊗ are well-defined on W (K) ×W (K). The associativity, com-
mutativity and distributivity are immediate from the corresponding properties
for ⊥ and ⊗ on quadratic spaces. That [⟨⟩K ] is a neutral element for ⊥ and [⟨1⟩K ]
is a neutral element for ⊗, is readily verified. Finally, that [(V,−q)] = −[(V, q)]
is a reformulation of Proposition 2.1.12. □

4.1.4. Definition. The set W (K) endowed with the ring structure described in
Theorem 4.1.3 is called the Witt ring of K.

4.1.5. Proposition. W (K) has a unique ideal of index 2, which is given by

I(K) = {[(V, q)] | dimV even}.
Proof. Observe that, if two nonsingular quadratic spaces are Witt equivalent,
then their dimensions differ by an even number. In particular, if one of them
has even dimension, then the other too. It is easy to see that I(K) is an
ideal. Furthermore, it has index 2, because for any quadratic space (V, q), ei-
ther [(V, q)] ∈ I(K), or [(V, q) ⊥ ⟨1⟩K ] ∈ I(K).

Assume that J is another ideal of W (K) of index 2. For a, b ∈ K×, we have
that [⟨a⟩K ], [⟨b⟩K ] ∈ W (K)× ⊆ W (K) \ J , hence [⟨a, b⟩K ] ∈ J . In view of
Corollary 1.2.10, we conclude that J contains all classes of quadratic spaces of
even dimension, hence I(K) ⊆ J . But then I(K) = J . □

4.1.6. Definition. The ideal I(K) described in Proposition 4.1.5 is called the
fundamental ideal of W (K).

4.1.7. Remark. Over a field K with char(K) = 2, the situation is more subtle.
There are natural operations ⊥ and ⊗ on the class of symmetric bilinear spaces
over K, and this allows one to define a Witt ring W (K) of nonsingular symmetric
bilinear forms. On the class of quadratic spaces over K there is no natural notion
of tensor product, but one can still define a group operation ⊥, and one obtains
a different object from W (K): the quadratic Witt group Iq(K). While Iq(K)
is not a ring, it does carry an action by W (K): Iq(K) is a W (K)-module. See
[EKM08, Sections 2, 8] for more on this.

4.2. Determinants. We briefly introduce the concept of the determinant of a
symmetric bilinear form. This allows us to simplify certain computations with
small-dimensional quadratic forms.

4.2.1. Proposition. Let (V1, B1) and (V2, B2) be isometric symmetric bilinear
spaces with bases B1 and B2. Then det(MB1(B1)) ≡ det(MB2(B2)) mod K×2.

Proof. It suffices to consider the case V1 = V2 = Kn for n = dim(V1), and where
B1 is the canonical basis {e1, . . . , en}. Let C ∈ Mn(K)× be the base change
matrix between B1 and B2, i.e. such that B2 = {Ce1, . . . , Cen}. We see that for
column vectors v, w ∈ Kn we have

vTCTMB1(B)Cw = B(Cv,Cw) = vTMB2(B)w
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whence MB2(B) = CTMB1(B)C and hence det(MB2(B)) = det(MB1(B)) det(C)2 ≡
det(MB2(B)) mod K×2 as desired. □

4.2.2. Definition. For a nonsingular symmetric bilinear space (V,B), we de-
fine the determinant of (V,B) (or simply of B) to be the equivalence class of
det(MB(B)) in K×/K×2, where B is any basis of V . We denote it simply by
det(V,B).

If char(K) ̸= 2 and (V, q) is a quadratic space over K, we define its determinant

as the determinant of (V, bq
2

).

For the rest of this subsection, assume that all quadratic spaces are considered
over a field K with char(K) ̸= 2.

4.2.3. Proposition. We have the following properties.

(1) For nonsingular quadratic spaces (V1, q1) and (V2, q2) we have det((V1, q1) ⊥
(V2, q2)) = det(V1, q1) · det(V2, q2).

(2) For a1, . . . , an ∈ K× we have det(⟨a1, . . . , an⟩K) ≡ a1 · · · an mod K×2.
(3) det(HK) ≡ −1 mod K×2.

Proof. These can be verified easily via the definition. □

As announced, determinants are a useful invariant of quadratic spaces which
can help to simplify certain calculations. We give an important example.

4.2.4. Proposition. Let a, b, c ∈ K× and assume that c ∈ DK(⟨a, b⟩K). Then
⟨a, b⟩K ∼= ⟨c, abc⟩K.

Proof. By Proposition 1.2.9 we have ⟨a, b⟩K ∼= ⟨c, d⟩K for some d ∈ K×. But since
cd ≡ det(⟨c, d⟩K) ≡ det(⟨a, b⟩K) ≡ ab mod K×, we must have d ≡ abc mod K×2,
whereby ⟨c, d⟩K ∼= ⟨c, abc⟩K . This concludes the proof. □

4.3. Multiplicative forms. When (V, q) is a quadratic space, the set DK(q)
of elements of K× represented by q is in general just a subset of K×. We now
consider a class of quadratic forms where this is in fact a subgroup.

4.3.1. Definition. Let (V, q) be a quadratic space. We call the set

GK(q) = {a ∈ K× | (V, q) ∼= (V, aq)}

the set of similarity factors of (V, q).
By a multiplicative form over K (some books use the term round form) we

mean a nonsingular quadratic form q for which DK(q) = GK(q).

4.3.2. Example. Every hyperbolic form is multiplicative, see Corollary 2.1.10.

4.3.3. Proposition. Let (V, q) be a nonsingular quadratic space over K.

(1) GK(q) is a subgroup of K× that contains K×2.
(2) GK(q) ·DK(q) = DK(q).
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Proof. The first part is clear. For the second part, consider a ∈ GK(q) and
d ∈ DK(q), then ad ∈ DK(aq) = DK(q). □

For the rest of this subsection, assume char(K) ̸= 2.

4.3.4. Theorem (Witt). Let q be a multiplicative form over K and a ∈ K×.
Then the form ⟨1, a⟩K ⊗ q is multiplicative. Moreover, if q is anisotropic, then
⟨1, a⟩K ⊗ q is either anisotropic or hyperbolic.

Proof. Let q′ = ⟨1, a⟩K ⊗ q. We have 1 ∈ GK(q) = DK(q) ⊆ DK(q′) and hence
GK(q′) ⊆ DK(q′) by Proposition 4.3.3. Further, observe that DK(q) ∪ aDK(q) =
GK(q) ∪ aGK(q) ⊆ GK(q′). Now consider c ∈ DK(q′) \ (DK(q) ∪ aDK(q)) arbi-
trary. Then there exist s, t ∈ DK(q) = GK(q) such that c ∈ DK(⟨s, at⟩K). By
Proposition 4.2.4 it follows that ⟨s, at⟩K ∼= ⟨c, acst⟩K . We now compute that

q′ ∼= q ⊥ aq ∼= sq ⊥ atq ∼= ⟨s, at⟩K ⊗ q ∼= ⟨c, acst⟩K ⊗ q

∼= cq ⊥ acstq ∼= cq ⊥ acq ∼= cq′

whereby c ∈ GK(q′). Since c ∈ DK(q′) was chosen arbitrarily, we conclude that
q′ is multiplicative.

For the second part, assume that q is anisotropic and q′ is isotropic. Then
there exist s, t ∈ DK(q) = GK(q) with ⟨s, at⟩K ∼= HK . We compute that

q′ ∼= q ⊥ aq ∼= sq ⊥ atq ∼= ⟨s, at⟩K ⊗ q ∼= HK ⊗ q

which is hyperbolic by Corollary 3.1.10. □

4.3.5. Definition. For n ∈ N and a1, . . . , an ∈ K×, we use the notation

⟨⟨a1, . . . , an⟩⟩K = ⟨1,−a1⟩ ⊗ . . .⊗ ⟨1,−an⟩K .
In particular, ⟨⟨⟩⟩K = ⟨1⟩K , and ⟨⟨a1⟩⟩K = ⟨1,−a1⟩K . We call a form which is
isometric to ⟨⟨a1, . . . , an⟩⟩K for some a1, . . . , an ∈ K× an n-fold Pfister form.

4.3.6. Theorem (Pfister). Let q be a Pfister form over K. Then q is multiplica-
tive, and either anisotropic or hyperbolic.

Proof. Assume that q is an n-fold Pfister form; we proceed by induction on n.
For n = 0 we have q ∼= ⟨1⟩K ; this form is anisotropic and DK(q) = K×2 = GK(q).
Assume now n > 0. We have that q ∼= ⟨1,−a⟩K ⊗ q′ for some (n − 1)-fold
Pfister form q′ over K. If q′ is anisotropic, then by induction hypothesis, q′ is
multiplicative, and by Theorem 4.3.4 also q is multiplicative and either anisotropic
or hyperbolic. If q′ is isotropic, then by induction hypothesis it is hyperbolic, and
then also q is hyperbolic by Corollary 3.1.10. □

We mention the following partial converse to Theorem 4.3.6, the proof of which
is outside the scope of this course. We will not use this result in the sequel. For
a quadratic form q over K and a field extension L/K, we denote by qL the
quadratic form over L obtained by extending scalars from K to L (we will see a
formal definition later, see Definition 8.2.2).
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4.3.7. Theorem (Pfister). Let q be an anisotropic quadratic form over K. The
following are equivalent.

(1) q is a Pfister form,
(2) DL(qL) is a subgroup of L× for every field extension L/K,
(3) 1 ∈ DK(q) and for every field extension L/K we have that qL is either

anisotropic or hyperbolic.

Proof. See [EKM08, Theorem 23.2 and Corollary 23.4]. □

4.3.8. Remark. Over a field K of characteristic 2, one can define a notion of
Pfister form both for bilinear forms and for quadratic forms. As usual, we refer to
[EKM08, Sections 7 and 9] for a characteristic-free exposition. An example of a 1-
fold quadratic Pfister form is given by X2+XY +aY 2 for a ∈ K. These quadratic
Pfister forms still satisfy the properties of Theorem 4.3.6 in characteristic 2.

4.4. Exercises. In all exercises, assume K is a field with char(K) ̸= 2.

(1) Compute the Witt ring of C and R.
(2) Let K be finite. Show the following:

(a) |K×/K×2| = 2,
(b) Every nonsingular 2-dimensional quadratic form over K is universal.
(c) Assume d ∈ K× \K×2. Every anisotropic quadratic form over K is

isometric to precisely one of the following forms:

⟨⟩K ⟨1⟩K ⟨d⟩K ⟨1,−d⟩K
(d) If |K| ≡ 1 mod 4, then −1 ∈ K×2 and WK ∼= (Z/2Z)[T ]/(T 2 + 1).
(e) If |K| ≡ 3 mod 4, then −1 ̸∈ K×2 and WK ∼= Z/4Z.

(3) Show that for a, b ∈ K× and a Pfister form q over K we have ⟨⟨a⟩⟩K ⊗ q ∼=
⟨⟨b⟩⟩K ⊗ q if and only if ab ∈ DK(q).

(4) Let a, b, c, d ∈ K×. Show that ⟨a, b⟩K ∼= ⟨c, d⟩K if and only if abcd ∈ K×2

and ⟨⟨−ab, ac⟩⟩K is isotropic. In particular, ⟨a, b⟩K is isotropic if and only
if −ab ∈ K×2.

(5) Show that for a, b, c, d ∈ K× we have ⟨⟨a, b⟩⟩K ∼= ⟨⟨c, d⟩⟩K if and only if
there exists e ∈ K× with

⟨⟨a, b⟩⟩K ∼= ⟨⟨a, e⟩⟩K ∼= ⟨⟨c, e⟩⟩K ∼= ⟨⟨c, d⟩⟩K .
(6) Let q be a 4-dimensional nonsingular quadratic form over K with 1 ∈

DK(q) and det(q) ≡ 1 mod K×2. Show that q is a Pfister form.
(7) Let q be a universal 3-dimensional quadratic form over K. Show that q

is isotropic.
(8) Show that DQ(⟨1, 1⟩Q) is a subgroup of Q×. Is the same true for DQ(⟨1, 1, 1⟩Q)?
(9) Give an example of an anisotropic quadratic form which is multiplicative

but not a Pfister form.
(10) Let n ∈ N and suppose that −1 is a sum of 2n+1 − 1 squares in K. Show

that −1 is a sum of 2n squares in K.
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5. Lecture 5

5.1. Powers of the fundamental ideal. Assume throughout that K is a field
with char(K) ̸= 2 and that all quadratic spaces are considered over K.

We will consider powers of the fundamental ideal IK of the Witt ring WK. For
a natural number n, we denote by InK the ideal of WK generated by products
of n elements in IK. By convention, we set I0K = WK. We obtain a natural
filtration

WK = I0K ⊇ I1K = IK ⊇ I2K ⊇ I3K ⊇ . . .

We can try to understand the group WK better by studying the ideals InK,
and/or by studying the quotients InK/In+1K. We already know that WK/I1K ∼=
Z/2Z, see Proposition 4.1.5.

5.1.1. Proposition. For n ≥ 1, the ideal InK is generated as a group by the Witt
classes of n-fold Pfister forms in K.

Proof. First observe that, for a, b ∈ K×, we have

⟨a, b⟩K ≡ ⟨a, b⟩K ⊥ HK
∼= ⟨1, a⟩K ⊥ −⟨1,−b⟩K ∼= ⟨⟨−a⟩⟩K ⊥ −⟨⟨b⟩⟩K .

Since every nonsingular binary quadratic form is isometric to ⟨a, b⟩K for some
a, b ∈ K× and since binary quadratic forms generate IK, we conclude that IK
is generated as a group by 1-fold Pfister forms. Since an n-fold Pfister form is by
definition a product of n 1-fold Pfister forms, we conclude that InK is generated
by n-fold Pfister forms, as desired. □

A quadratic form over K which is isometric to aπ for a Pfister form π and an
element a ∈ K× is called a scaled Pfister form. Observe that the class of a scaled
n-fold Pfister form lies in InK.

Our first goal will be to understand the quotient IK/I2K.

5.1.2. Lemma. Let (V, q) a nonsingular quadratic space over K, assume dim(V ) ≥
3. There exists a quadratic space (W, q′) with dim(W ) = dim(V )−2 and a scaled
2-fold Pfister form (P, qP ) such that (V, q) ≡ (W ′, q′) ⊥ (P, qP ).

Proof. In view of Corollary 1.2.10 it suffice to consider the case where (V, q) =
⟨a, b, c⟩K for a, b, c ∈ K×. Now set q′ = ⟨−abc⟩K and qP = abc⟨⟨−ab,−ac⟩⟩K . We
have dim(q′) = 1 and we compute that

q′ ⊥ qP ∼= ⟨−abc, abc⟩K ⊥ ⟨a, b, c⟩K ∼= HK ⊥ q ≡ q.

Hence q′ and qP are as desired. □

5.1.3. Definition. Let (V, q) be a nonsingular quadratic space. We define its
discriminant (in some books called signed determinant) to be

d(V, q) = (−1)(
dim(V )

2 ) det(V, q) ∈ K×/K×2.
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Observe that for a natural number n we have

(−1)(
n
2) =

{
1 if n ≡ 0, 1 mod 4

−1 if n ≡ 2, 3 mod 4
.

In particular, if m and n are two natural numbers and at least one of them is
even, then it follows that

(1) (−1)(
m
2 )(−1)(

n
2) = (−1)(

m+n
2 ).

5.1.4. Proposition. If (V, q) and (V ′, q′) are Witt equivalent nonsingular qua-
dratic spaces, then d(V, q) = d(V ′, q′). Furthermore, the map

IK → K×/K×2 : [(V, q)] 7→ d(V, q)

is a well-defined surjective group homomorphism with kernel I2K. In particular,
IK/I2K ∼= K×/K×2.

Proof. For the first part, we need to check that if (V, q) ≡ (V ′, q′), then d(V, q) =
d(V ′, q′). It suffices to consider the case where (V ′, q′) = (V, q) ⊥ HK . We
compute using Proposition 4.2.3 and eq. (1) that

d((V, q) ⊥ HK) = (−1)(
dim(V )+2

2 ) det((V, q) ⊥ HK)

= −(−1)(
dim(V )

2 ) det(V, q) det(HK)

= (−1)(
dim(V )

2 ) det(V, q) = d(V, q)

as desired. This also shows that the given map is well-defined.
The fact that it is a group homomorphism is now also immediate from Proposi-

tion 4.2.3 and eq. (1). For the surjectivity, it suffices to observe that d(⟨1,−a⟩K) ≡
a mod K×2 for a ∈ K×.

We now compute the kernel of the morphism. One computes that, for any
a, b ∈ K×, we have

d(⟨⟨a, b⟩⟩K) = d(⟨1,−a,−b, ab⟩K) ≡ 1 mod K×2.

So, any equivalence class of a 2-fold Pfister form lies in the kernel of d. In view
of Proposition 5.1.1 we conclude that I2K ⊆ Ker(d).

For the converse implication, consider ζ ∈ Ker(d). By Lemma 5.1.2 we have
ζ ≡ [(V, q)] mod I2K where dim(V ) = 2. Since I2K ⊆ Ker(d) by the previous
paragraph, we conclude that d(V, q) = d(ζ) ≡ 1 mod K×2. But then det(V, q) =
−1, which implies (V, q) ∼= HK , whereby [(V, q)] = 0, and we conclude that
ζ ∈ I2K as desired. □

5.1.5. Proposition. Let (V, q) be a nonsingular quadratic space with [(V, q)] ∈
I2K and m = dim(V )/2 − 1. There exist scaled 2-fold Pfister forms π1, . . . , πm

such that [(V, q)] =
∑m

i=1[πi].
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Proof. If m = 0 then, as in the proof of Proposition 5.1.4, we see that (V, q) must
be hyperbolic, hence [(V, q)] = 0. The general case now follows from Lemma 5.1.2
by induction on m. □

5.1.6. Question. Let n, d ∈ N+. Does there exist a natural number m such that
every d-dimensional quadratic space (V, q) with [(V, q)] ∈ InK is Witt equivalent
to a sum of m scaled Pfister forms?

For n = 1 the answer is easy (every binary nonsingular quadratic form is a
scaled Pfister form, so one can take m = d/2), and for n = 2 one can take
m = d/2 − 1 by Proposition 5.1.5. For n = 3 it is known that such a number
m exists, and that it grows at least exponentially as a function of d [BRV10].
For n > 3 it is completely open whether such a number m exists in general. Of
course, over many specific fields K, often the situation is much easier.

We mention the following major theorem, without providing a proof.

5.1.7. Theorem (Arason-Pfister Hauptsatz, 1971). Let n ∈ N and let (V, q) be a
nonsingular quadratic space with [(V, q)] ∈ InK.

(1) Either dim(V ) ≥ 2n or (V, q) is hyperbolic.
(2) If dim(V ) = 2n, then (V, q) is a scaled n-fold Pfister form.

Proof. The first part is [EKM08, Theorem 23.7]. The second part follows from
combining the first part with Theorem 4.3.7. □

5.1.8. Corollary. We have
⋂

n∈N I
nK = {0}.

Proof. Consider a non-zero element of WK, then it is of the form [(V, q)] for
some non-zero anisotropic quadratic form q. For n > log2(dim(V )) we have
[(V, q)] ̸∈ InK by Theorem 5.1.7. □

5.2. Symbols in InK/In+1K. Assume throughout that K is a field with char(K) ̸=
2. We want to give a description of the quotients InK/In+1K through generators
and relations. We know from Proposition 5.1.1 that the group InK is gener-
ated by the classes of n-fold Pfister forms over K, hence the same holds for
In+1K. We also know that WK/IK ∼= Z/2Z, and that IK/I2K ∼= K×/K×2

via the signed discriminant map (see Proposition 5.1.4); its inverse is the map
K×/K×2 → IK/I2K mapping the class of an element a ∈ K× to the quadratic
form ⟨1,−a⟩K . We now seek to generalise this to higher powers of the fundamen-
tal ideal. The presentation in this subsection gives an ad hoc introduction to a
branch of mathematics closely related to quadratic form theory, called Algebraic
K-Theory, or sometimes Milnor’s K-Theory .

5.2.1. Definition. For n ∈ N and a1, . . . , an ∈ K×, we denote by {a1, . . . , an}K
the equivalence class of ⟨⟨a1, . . . , an⟩⟩K in InK/In+1K. We call such elements
{a1, . . . , an}K ∈ InK/In+1K symbols .

We have a map (K×)n → InK/In+1K : (a1, . . . , an) 7→ {a1, . . . , an}K . Let us
phrase some basic properties of this map.
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5.2.2. Proposition. We have the following for a1, . . . , an ∈ K×,

(1) (multilinearity) For i ∈ {1, . . . , n} and a′i ∈ K×

{a1, . . . , aia′i, . . . an}K = {a1, . . . , ai, . . . , an}K + {a1, . . . , a′i, . . . , an}K ,

(2) (2-torsion)

2 × {a1, . . . , an}K = {a1, . . . , an}K + {a1, . . . , an}K = 0,

(3) (Steinberg relation) If i ∈ {1, . . . , n − 1} is such that ai + ai+1 = 1, then
{a1, . . . , an}K = 0.

Proof. (1): Consider the (n−1)-fold Pfister form q = ⟨⟨a1, . . . , ai−1, ai+1, . . . , an⟩⟩.
We need to show that [q⊗⟨⟨ai⟩⟩K ] + [q⊗⟨⟨a′i⟩⟩K ] ≡ [q⊗⟨⟨aia′i⟩⟩K ] mod In+1K. We
compute that

q ⊗ ⟨⟨ai⟩⟩K ⊥ q ⊗ ⟨⟨a′i⟩⟩K ⊥ −q ⊗ ⟨⟨aia′i⟩⟩K
∼= (q ⊥ −aiq) ⊥ (q ⊥ −a′iq) ⊥ −(q ⊥ aia

′
iq)

∼= (q ⊥ −aiq ⊥ −a′iq ⊥ aia
′
iq) ⊥ (q ⊥ −q)

∼= q ⊗ ⟨⟨ai, ai+1⟩⟩K ⊥ q ⊗ ⟨⟨−1⟩⟩K .

Since q ⊗ ⟨⟨ai, ai+1⟩⟩K is an (n + 1)-fold Pfister form and q ⊗ ⟨⟨−1⟩⟩ is hyperbolic
(as ⟨⟨1⟩⟩K ∼= HK , see also Corollary 3.1.10) we obtain that

[q⊗⟨⟨ai⟩⟩K ]+[q⊗⟨⟨a′i⟩⟩K ]−[q⊗⟨⟨aia′i⟩⟩K ] = [q⊗⟨⟨ai, ai+1⟩⟩K ⊥ q⊗⟨⟨−1⟩⟩K ] ∈ In+1K.

From this, the desired statement follows.
(2) Set q = ⟨⟨a1, . . . , an⟩⟩K . We have [q] + [q] = [q ⊥ q] = [q ⊗ ⟨⟨−1⟩⟩] ∈ In+1K.

From this the statement follows.
(3) It suffices to show that ⟨⟨a1, . . . , an⟩⟩K is hyperbolic whenever ai +ai+1 = 1.

In view of Theorem 4.3.6 it even suffices to show that ⟨⟨a1, . . . , an⟩⟩K is isotropic.
This follows because ⟨⟨a1, . . . , an⟩⟩K contains as a subform ⟨1,−ai,−ai+1⟩K , which
is isotropic since 12 − ai1

2 − ai+11
1 = 0. □

The following properties can be derived from the properties of Pfister forms
and the definition of InK/In+1K, but, more interestingly, they can be proved
using only only the three properties from Proposition 5.2.2 as axioms.

5.2.3. Corollary. We have the following for a1, . . . , an ∈ K×:

(1) If i ∈ {1, . . . , n− 1} is such that ai + ai+1 = 0, then {a1, . . . , an}K = 0.
(2) (invariance under permutation) For i ∈ {1, . . . , n− 1},

{a1, . . . , ai, ai+1, . . . , an}K = {a1, . . . , ai+1, ai, . . . , an}K ,

(3) For d ∈ K×, {a1d2, a2, . . . , an}K = {a1, a2, . . . , an}K,
(4) {a1, . . . , an}K = {a1 + a2,−a1a2, a3, . . . , an}K, provided that a2 ̸= −a1.

Proof. Exercise. □
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In an influential paper from 1970 [Mil70], John Milnor conjectured that the
three properties from Proposition 5.2.2 can be used to completely axiomatise the
relations between the elements {a1, . . . , an}K . He was able to establish several
special cases (small values of n and specific fields), but the general case was only
solved more than thirty years later by the work of Orlov, Vishik, and Voevodsky
[OVV07]. Below is a version of their result, stated in the form of a universal
property. The proof is far beyond the scope of this course, and we will not make
use of this result in the course either.

5.2.4. Theorem (Orlov-Vishik-Voevodsky). Let n ∈ N, G an abelian group, and
Φ : (K×)n → G a map satisfying the properties from Proposition 5.2.2, i.e. for
a1, . . . , an ∈ K×, i ∈ {1, . . . , n}, a′i ∈ K×,

• Φ(a1, . . . , aia
′
i, . . . , an) = Φ(a1, . . . , ai, . . . , an) + Φ(a1, . . . , a

′
i, . . . , an),

• 2 × Φ(a1, . . . , an) = 0,
• if ai + ai+1 = 1, then Φ(a1, . . . , an) = 0.

Then there exists a unique group homomorphism Φ̃ : InK/In+1K → G such that
Φ(a1, . . . , an) = Φ̃({a1, . . . , an}K) for all a1, . . . , an ∈ K×.

Finally, we mention the following consequence of the Arason-Pfister Hauptsatz,
which can be useful when classifying quadratic forms over a field.

5.2.5. Proposition. For n ∈ N and a1, . . . , an, b1, . . . , bn ∈ K× we have that

{a1, . . . , an}K = {b1, . . . , bn}K if and only if ⟨⟨a1, . . . , an⟩⟩K ∼= ⟨⟨a1, . . . , an⟩⟩K .

In particular, we have {a1, . . . , an}K = 0 if and only if ⟨⟨a1, . . . , an⟩⟩K is hyper-
bolic.

Proof. By definition we have {a1, . . . , an}K = {b1, . . . , bn}K if and only if [⟨⟨a1, . . . , an⟩⟩K ] ≡
[⟨⟨b1, . . . , bn⟩⟩K ] mod In+1K. It is thus clear that if ⟨⟨a1, . . . , an⟩⟩K ∼= ⟨⟨b1, . . . , bn⟩⟩K ,
then {a1, . . . , an}K = {b1, . . . , bn}K .

Conversely, suppose [⟨⟨a1, . . . , an⟩⟩K ] ≡ [⟨⟨b1, . . . , bn⟩⟩K ] mod In+1K. Then the
class of ⟨⟨a1, . . . , an⟩⟩K ⊥ −⟨⟨b1, . . . , bn⟩⟩K lies in In+1K and has dimension 2n+1,
so by Theorem 5.1.7 it must be isometric to a scaled (n + 1)-fold Pfister form.
In particular, by Theorem 4.3.6 it must be either anisotropic or hyperbolic. It
is not anisotropic (since 1 ∈ DK(⟨⟨a1, . . . , an⟩⟩K)∩DK(⟨⟨b1, . . . , bn⟩⟩K), so it must
be hyperbolic. In other words, [⟨⟨a1, . . . , an⟩⟩K ⊥ −⟨⟨b1, . . . , bn⟩⟩K ] = 0 in WK,
whereby [⟨⟨a1, . . . , an⟩⟩K ] = [⟨⟨b1, . . . , bn⟩⟩K ], and since both forms have the same
dimension, we conclude that indeed ⟨⟨a1, . . . , an⟩⟩K ∼= ⟨⟨b1, . . . , bn⟩⟩K .

The “in particular” part follows by taking ⟨⟨b1, . . . , bn⟩⟩ hyperbolic (e.g. setting
b1 = 1). □

5.3. Exercises.

(1) Show the following for a field K with char(K) ̸= 2:
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(a) |K×/K×2| < ∞ if and only if, for every n ∈ N, there exist up to
isomorphism only finitely many anisotropic quadratic forms of di-
mension n, if and only if WK is a noetherian ring,

(b) |WK| < ∞ if and only if |K×/K×2| < ∞ and −1 is a sum of squares
in K.

(2) Give a proof of Corollary 5.2.3 using only the computation rules from
Proposition 5.2.2.

6. Lecture 6

6.1. The p-adic numbers. To see that a polynomial f ∈ Z[X1, . . . , Xn] does
not have an integral zero, one can often use modular arithmetic: if f does not
have a zero over Z/mZ for some m ∈ N, then it can certainly not have a zero over
Z. For example, the equation X3 + 7XY = 16 cannot have an integral solution,
because modulo 7 it reduces to X3 = 2, which has no solution in the ring Z/7Z.

Similarly, modular arithmetic can be used to show that an equation does not
have a rational solution. The most famous example is the equation X2 = 2,
which cannot have a solution in Q by considerations modulo 4, after writing out
a hypothetical solution in Q as a fraction of two coprime integers.

In this section we shall introduce, for each prime number p, a commutative
ring Zp, called the ring of p-adic integers . It is an object which shall capture, in
a certain sense, all information about solvability of polynomial equations modulo
powers of p.

6.1.1. Proposition. Let p ∈ P. Consider the subset of the product ring Ap =∏
n∈N+ Z/pnZ given as

Zp = {(xn + pnZ) ∈ Ap | (xn)n ∈ ZN s.t. xn ≡ xn+1 mod pn for all n ∈ N+}.
We have the following:

(i) Zp is a subring of Ap of characteristic 0.
(ii) Zp is an integral domain.
(iii) The ideal pZp is a maximal ideal of Zp, and we have for m ∈ N+ that

pmZp = {(xn + pnZ)n ∈ Zp | xm = 0}.
(iv) For all n ∈ N, pnZp ∩ Z = pnZ, and the natural map Z → Zp induces an

isomorphism Z/pnZ → Zp/p
nZp.

Proof. Exercise. □

6.1.2. Definition. We call the ring Zp constucted in Proposition 6.1.1 the ring
of p-adic integers. We denote by Qp its field of fractions, and call it the field of
p-adic numbers.

It follows from Proposition 6.1.1 that a polynomial f ∈ Z[X1, . . . , Xn] which
has a root in Zp will have a root in Z/pmZ for all m ∈ N. Assuming the Axiom
of Choice, the converse statement also holds, see Exercise (9). We will not need
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this converse statement in full generality; instead, let us phrase now a powerful
tool to establish explicitly solvability of equations in Zp; it can be seen as a p-adic
version of Newton’s method from numerical analysis.

For a commutative ring R and a univariate polynomial f ∈ R[X], we denote
by f ′ ∈ R[X] its formal derivative, i.e. if f =

∑n
i=0 aiX

i for n ∈ N, ai ∈ R, then

f ′ =
∑n−1

i=0 (i + 1)ai+1X
i.

6.1.3. Proposition (Hensel’s Lemma). Let f ∈ Zp[X] and let x1 ∈ Z be such
that

f(x1) ≡ 0 ̸≡ f ′(x1) mod p,

in other words, x1 is a simple root of f in Z/pZ. Then there exists x ∈ Zp with
x− x1 ∈ pZp and f(x) = 0.

Proof. It suffices to construct recursively for n ∈ N+ an element xn+1 ∈ Z with

xn+1 ≡ xn mod pn and f(xn+1) ≡ 0 mod pn+1.

Indeed, we may then set x = (xn+pnZ)n; this is an element of Zp by construction,
and we further obtain f(x) = (f(xn) + pnZ)n = 0 as desired.

So let n ∈ N+ and assume xn is already given. We have in particular that

xn ≡ x1 mod p, f(xn) ≡ 0 mod pn and f ′(xn) ≡ f ′(x1) ̸≡ 0 mod p.

For e ∈ Z we have (by a formal version of “Taylor’s Theorem”, see Exercise (3)):

f(xn + epn) ≡ f(xn) + f ′(xn)epn mod pn+1.

Since by assumption pn divides f(xn) and f ′(xn) ̸≡ 0 mod p, there exists some
e ∈ Z with

p−nf(xn) + f ′(xn)e ≡ 0 mod p.

Thus, it suffices to set, for this value of e, xn+1 = xn + epn. □

We obtain more properties of the ring Zp and the field Qp.

6.1.4. Proposition. Let p ∈ P. We have the following.

(i) Zp has a unique maximal ideal, namely pZp. In particular, Z×
p = Z \ pZp.

(ii) Every nonzero ideal of Zp is of the form pnZp for a unique n ∈ N; in
particular, Zp is a principal ideal domain.

(iii) Every nonzero element of Qp has a unique presentation of the form pku for
k ∈ Z and u ∈ Z×

p .

Proof. (i): We already know from Proposition 6.1.1 that pZp is a maximal ideal
of Zp. Take x ∈ Zp \ pZp and consider the polynomial f(X) = Xx − 1. Since
x ̸∈ pZp, its residue x ∈ Z/pZ ∼= Fp is invertible, so there exists y1 ∈ Z with
f(y) = yx − 1 ≡ 0 mod p. On the other hand, f ′(y1) = x ̸≡ 0 mod p. We
conclude by Proposition 6.1.3 that there exists y ∈ Zp with 0 = f(t) = yx − 1,
i.e. y = x−1. This shows that Zp \ pZp = Z×

p , so pZp is the unique maximal ideal
of Zp, so Zp is a local ring.
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(ii) and (iii): It suffices to show that every non-zero element of Zp has a unique
presentation as pku for k ∈ N and u ∈ Z×

p , then both statements follow easily.
The uniqueness is clear, as pZp is a prime ideal. The existence is clear from (i)
and the fact that

⋂
n∈N p

nZp = {0} by Proposition 6.1.1. □

According to part (iii) of Proposition 6.1.4, we can write an arbitrary non-zero
element x ∈ Qp as pku for k ∈ Z and u ∈ Z×

p . One sees that then k = max{l ∈
Z | p−lu ∈ Zp}. We can thus define a map

vp : Q×
p → Z : x 7→ max{l ∈ Z | p−lu ∈ Zp}.

We extend this to a map Qp → Z ∪ {∞} by the convention vp(0) = ∞, and call
vp the p-adic valuation on Qp. Taking the convention that a + ∞ = ∞ for all
a ∈ Z ∪ {∞} and that ∞ > a for all a ∈ Z, we obtain the following.

6.1.5. Proposition. Let p ∈ P. We have

• vp(xy) = vp(x) + vp(y) for all x, y ∈ Qp,
• vp(x + y) ≥ min{vp(x), vp(y)}, and equality holds when vp(x) ̸= vp(y),
• Zp = {x ∈ Qp | vp(x) ≥ 0},
• for x ∈ Z we have vp(x) = max{l ∈ N | x ∈ plZ}. In particular, {z ∈ Q |
vp(z) ≥ 0} = Zp ∩Q = {x

y
| x ∈ Z, y ∈ Z \ pZ}.

• For x ∈ Q, the set {q ∈ P | vq(x) ̸= 0} is finite.

Proof. Exercise. □

One should think of vp as a map which measures how divisible an element is
by p.

6.1.6. Example. 2 is not a square in Q, here is a proof: suppose there would exist
x ∈ Q with x2 = 2. Then 1 = v2(2) = v2(x

2) = 2v2(x) ∈ 2Z. Contradiction.

6.2. The p-adic topology. We now present another way to think about the field
of p-adic numbers Qp, which reveals an analogy with the field of real numbers R.

One way to show that a polynomial f ∈ Q[X1, . . . , Xn] does not have a zero in
Qn, is by showing that it does not have a zero in Rn. Since (by definition) real
numbers can be approximated arbitrarily by rational numbers (in other words,
Q is dense in R), and by the completeness of R, it follows that f has a root in
Rn if and only if for every m ∈ N there exists xm ∈ Qn such that |f(xm)| < 1/m.

In fact, while there are many ways to construct the field R, it is completely
characterised by the conditions that it is an ordered field, Q is dense in R, and R
is complete with respect to the metric induced by the absolute value, i.e. every
Cauchy sequence has a limit.

We now define a different metric on the field of rational numbers Q than the
standard metric induced by the absolute value.

6.2.1. Proposition. Let p ∈ P. Consider the map

dp : Qp ×Qp → R≥0 : (x, y) 7→ p−vp(x−y)
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where we take the convention p−∞ = 0. Then dp defines a metric on Qp, i.e. it
satisfies for x, y, z ∈ Qp

(i) dp(x, y) = 0 if and only if x = y,
(ii) dp(x, y) = dp(y, x),
(iii) dp(x, z) ≤ max{d(x, y), d(y, z)} ≤ d(x, y) + d(y, z).

Proof. This follows immediately from Proposition 6.1.5. □

6.2.2. Definition. The map dp defined in Proposition 6.2.1 is called the p-adic
metric. The topology it induces on Qp is called the p-adic topology . This map
also induces a metric (and thus a topology) on Zp, Q, and Z, which we will also
call the p-adic metric (respectively topology). The first inequality in (iii) is called
the strong triangle inequality

6.2.3. Example. Consider the p-adic metric dp on Qp. The ball of radius 1 around
the origin is precisely Zp.

As for any metric space, we can talk about convergence of sequences, Cauchy
sequences, open and closed subsets, dense subsets, et cetera, for the p-adic metric.
The intuition should be that elements are close to eachother when their difference
has high p-adic value, i.e. is divisible in Zp by a high power of p. For example,
one verifies that:

• given a sequence (xn)n in Qp and x ∈ Qp, we have that (xn)n converges
to x (or limn→∞ xn = x) if for all m ∈ N there exists n0 ∈ N such that for
all n ≥ n0 one has vp(x− xn) > m.

• given a sequence (xn)n in Qp, we have that (xn)n is a Cauchy sequence if
for all m ∈ N there exists n0 ∈ N such that for all n1, n2 ≥ n0 one has
vp(xn1 − xn2) > m.

6.2.4. Proposition. The p-adic topology is a field topology, i.e. {x} is a closed
set for any x ∈ Qp, and the maps

Qp ×Qp → Qp : (x, y) 7→ x + y

Q×
p ×Q×

p → Q×
p : (x, y) 7→ x · y

are continuous.

Proof. Exercise. □

We shall show that Qp is, in fact, the completion of Q with respect to the p-adic
topology.

6.2.5. Theorem. Let p ∈ P. Then Zp and Qp are complete with respect to the
p-adic metric, i.e. every Cauchy sequence in Zp (respectively Qp) converges to an
element of Zp (respectively Qp).

Proof. Let (xn)n be a Cauchy sequence in Zp. To show that (xn)n converges, it
suffices to show that there is a convergent subsequence. By removing intermediate
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terms, we may thus assume without loss of generality that, for all n ∈ N and for

all n1, n2 ≥ n, vp(xn1 − xn2) ≥ n. Write xn = (x
(m)
n + pmZ)m for some x

(m)
n ∈ Z.

Define x = (x
(m)
m + pmZ)m. We claim that x ∈ Zp and x = limn→∞ xn.

Consider n ∈ N+. For m ≥ n we have that vp(xn−xm) ≥ n, which implies that

x
(m)
n ≡ x

(m)
m mod pn. Applying this to m = n+ 1 in particular we obtain x

(n+1)
n ≡

x
(n+1)
n ≡ x

(n+1)
n+1 mod pn; having this for general n shows x ∈ Zp. Furthermore, we

see that vp(xn − x) ≥ n by construction. This implies limn→∞ xn = x as desired.
We have shown the completeness of Zp.

The completeness of Qp then follows from this: consider a Cauchy sequence
(xn)n in Zp. There must exist some k ∈ N such that vp(xn) ≥ −k for all n ∈ N.
But then (pkxn)n is a Cauchy sequence in Zp, which by the previous part converges
to some x′ ∈ Zp, but then (xn)n converges to p−kx′. □

We give another presentation of p-adic numbers using infinite series. Just like
with the real numbers, when (xn)n is a sequence of p-adic numbers, we denote
by

∑+∞
n=0 xn the element limn→+∞

∑n
i=0 xi, assuming that this limit converges.

6.2.6. Proposition. Let p ∈ P.
(i) For any sequence (an)n in Zp, the sum

∑+∞
n=0 anp

n converges in Zp.
(ii) For any x ∈ Zp, there exists a unique sequence (an)n with an ∈ {0, 1, . . . , p−

1} such that x =
∑+∞

n=0 anp
n.

(iii) For any x ∈ Qp, there exists a unique sequence (an)+∞
n=vp(x)

with an ∈
{0, 1, . . . , p− 1} such that x =

∑+∞
n=vp(x)

anp
n.

Proof. (i) follows immediately from the completeness of Zp (Theorem 6.2.5).

(ii): Write x = (xn + pnZ)n for xn ∈ Z. Suppose that x =
∑+∞

n=0 anp
n for some

an ∈ {0, . . . , p − 1}. We shall determine what values the an must necessarily
have, which shall establish the uniqueness, and then simultaneously verify that
one can always choose the an as such, which establishes existence in view of (i).

Since x ≡
∑+∞

n=0 anp
n ≡ a0 mod p, we must have a0 ≡ x1 mod p. We thus

choose a0 as the unique element in {0, . . . , p−1} with this property. Now assume
that a0, . . . , an−1 have been chosen such that

∑n−1
i=0 aip

i ≡ xn mod pn. Since

xn+1 ≡ xn mod pn, we have that xn+1 =
∑n−1

i=0 aip
i + pnb for some b ∈ Z. There

is a unique an ∈ {0, . . . , p − 1} such that an ≡ b mod p, and then we have by
construction xn+1 ≡

∑n
i=0 aip

i mod pn+1.
(iii) follows from (ii) and Proposition 6.1.4. □

For x ∈ Zp, its unique presentation as
∑+∞

n=0 anp
n for an ∈ {0, 1, . . . , p − 1} is

called its p-adic series expansion or simply p-adic expansion.

6.2.7. Example. We find the 7-adic expansion of 142
9

.

Note that 142
9

= 16 − 2
9
. We can easily find a 7-adic expansion of 16: we have

16 = 2 · 70 + 2 · 71. To find a 7-adic expansion of 1
9
, we shall use (see (5) below)
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that, for any k ∈ N+, we have in Z7 that

1

1 − 7k
=

+∞∑
i=0

7ik.

Since 9 and 7 are coprime, there must exist k ∈ N+ such that 9 | (7k − 1); one
verifies that k = 3 works. We compute that

1

9
=

1

9
· 1 − 73

1 − 73
=

−38

1 − 73
= −38

+∞∑
n=0

73n

and thus

142

9
= 16 − 2

9
= 2 · 70 + 2 · 71 + 76

+∞∑
n=0

73n

= 2 · 70 + 2 · 71 + (6 · 70 + 3 · 71 + 1 · 72)
+∞∑
n=0

73n

= 2 · 70 + 2 · 71 + 6 · 70 + 6
+∞∑
n=1

73n + 3 · 71 + 3
+∞∑
n=1

73n+1 +
+∞∑
n=0

73n+2

= 1 · 70 + 6 · 71 +
+∞∑
n=0

(73n+2 + 6 · 73n+3 + 3 · 73n+4).

We see that the 7-adic representation of 142
9

becomes periodic after finitely many
terms. This is no coincide, see Exercise (6) below.

6.2.8. Corollary. Z is dense in Zp and Q is dense in Qp with respect to the p-adic
topology.

Proof. This is immediate from parts (ii) and (iii) of Proposition 6.2.6. □

Just like for the reals, one can show that Qp is uniquely determined up to
canonical isomorphism by the property that it is a field with a complete metric
extending the p-adic metric on Q and in which Q is dense; see e.g. [EP05, Theorem
2.4.3].

6.3. Exercises. Let always p ∈ P.

(1) Prove Proposition 6.1.1, Proposition 6.1.5, and Proposition 6.2.4 and fill
in the missing details in the proof of Proposition 6.1.4.

(2) Consider the construction of Zp given in Proposition 6.1.1, but instead
of considering p ∈ P, we do the same construction for p = 10. Show, by
giving explicit zero divisors, that Z10 is not an integral domain.
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(3) Let R be a commutative ring, f ∈ R[X] a polynomial of degree at most
n, a ∈ R. Show that

f(X) = f(a) +
n∑

i=1

f (i)(a)(X − a)i

i!

where f (i) denotes the ith formal derivative of f (i.e. f (i+1) = (f (i))′).
(4) Consider the polynomial f(X) = 10X4 + 3X3 − 3X2 + 6. Determine

whether f has a root in Z2, and whether f has a root in Z3.
(5) Show that, for k ∈ N+, one has

∑+∞
i=0 p

ki = (1 − pk)−1 in Zp. (Hint: use
the fact that limn→∞ pn = 0 in Zp.)

(6) Let x ∈ Qp. Show that x ∈ Q if and only if the p-adic expansion of

x is eventually periodic, i.e. writing x =
∑+∞

n=k anp
n for some k ∈ Z,

an ∈ {0, 1, . . . , p − 1}, there exists n0,m ∈ N+ such that for all n ≥ n0,
an+m = an.

(7) Given x =
∑+∞

n=0 anp
n for certain an ∈ {0, . . . , p− 1}. Find a formula for

the p-adic expansion of −x.
(8) Show that the p-adic topology on Zp is compact.
(9) Let n ∈ N and f ∈ Zp[X1, . . . , Xn]. Assume that, for all m ∈ N, there

exists (x1, . . . , xn) ∈ Zn with f(x1, . . . , xn) ≡ 0 mod pm. Use the Axiom of
Choice to infer that there exists (x1, . . . , xn) ∈ Zn

p with f(x1, . . . , xn) = 0.
(10) Show that Zp is uncountable.

7. Lecture 7

7.1. Squares in p-adic fields. The goal of this lecture and the next will be to
completely classify quadratic forms over Qp for each p ∈ P. We start by studying
when an element of Qp is a square. In view of Proposition 5.1.4, this will allow
us to compute IQp/I

2Qp
∼= Q×

p /Q×2
p .

7.1.1. Proposition (Local Square Theorem). Let p ∈ P and α ∈ Zp. Then
1 + 4pα ∈ Z2

p, that is, 1 + 4pα is a square of a number from Zp.

In particular, if p > 2 and λ ∈ pZp, then 1 + λ ∈ Z2
p.

Proof. Consider f(x) = px2 + x− α ∈ Zp[x]. Then

f(α) = pα2 ≡ 0 (mod p) and f ′(α) = 2pα + 1 ≡ 1 ̸≡ 0 (mod p),

so we can apply Hensel’s Lemma (Proposition 6.1.3). We get that there exists
β ∈ Zp such that f(β) = 0. By the quadratic formula,

β =
−1 ±

√
1 + 4pα

2p
,

so 1 + 4pα = (1 + 2pβ)2 ∈ Z2
p as desired.

For the “In particular” part, it is enough to apply the main part for α = λ
4p

. □
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7.1.2. Corollary. Let p ∈ P\{2}. Let u ∈ Zp such that u is not a square in Fp. We
have that |Q×

p /Q×2
p | = 4; more specifically, Q×

p /Q×2
p = {Q×2

p , uQ×2
p , pQ×2

p , upQ×2
p }.

Proof. We first show that u, p, and up are not squares in Qp. If we had p = α2

for some α ∈ Qp, then 1 = vp(p) = vp(α
2) = 2vp(α), which is not possible,

since vp(α) must be an integer. Thus, p is not a square in Qp, and by a similar
argument, up is not a square in Qp. Assume now that u = α2 for some α ∈ Qp.
Then 0 = vp(u) = 2vp(α), so, vp(α) = 0 and hence α ∈ Zp. The equation u = α2

then implies u = α2 in Fp, but this is impossible, since we assumed that u is not
a square in Fp.

Now, we need to show that an arbitrary non-zerp element of Qp can be written
as a square times 1, u, p, or up. So take α ∈ Q×

p arbitrary. Write α = pkα′ for

some k ∈ Z and α′ ∈ Z×
p . Since |F×

p /F×2
p | = 2 (see Exercise (2) in Lecture 4) and

u ̸∈ F×2
p , we have that either α′ ∈ F×2

p or α′u ∈ F×2
p . Set α′′ = α′ in the first case,

or α′′ = α′u in the second case.
We now show that α′′ ∈ Q×2

p . Since α can be written as α′′ multiplied with a
product of powers of p and u, this will conclude the proof that every element of
Q× is a square times 1, p, u, or up. Since α′′ ∈ F×2

p , we can find β ∈ Z×
p such that

α′ = β
2
. Then α′′(β−1)2 = 1, whereby α′′(β−1)2 ∈ 1 + pZp. By Proposition 7.1.1

we conclude that α′′(β−1)2 ∈ Q×2
p and hence α′′ ∈ Q×2

p , as desired. □

7.1.3. Corollary. We have that |Q×
2 /Q×2

2 | = 8; more specifically, Q×
2 /Q×2

2 =
{±Q×2

2 ,±2Q×2
2 ,±3Q×2

2 ,±6Q×2
2 }.

Proof. We proceed as in the proof of Corollary 7.1.2. First, we show that −1, 2,−2, 3,−3, 6,−6
are all non-squares in Q2. For α = 2,−2, 6,−6 we have v2(α) = 1, so we conclude
as before that α cannot be a square. For α = −1, 3,−3, assume that α = β2 for
some β ∈ Q2. Then 0 = v2(α) = 2v2(β), so v2(β) = 0 and thus β ∈ Z2. Since
α = β2, we have in particular α ≡ β2 mod 8Z2. But it is easy to compute that
in Z2/8Z2

∼= Z/8Z, −1, 3 and −3 are not squares.
Now, we need to show that an arbitrary non-zero element of Q2 can be writ-

ten as a square times ±1, ±2, ±3, or ±6. This is similar as in the proof of
Corollary 7.1.2 and left as an exercise. □

7.2. 2-fold Pfister forms over p-adic fields. Now that we know what the
group IQp/I

2Qp
∼= Q×

p /Q×2
p looks like, we look at the next quotient I2Qp/I

3Qp.
In view of Proposition 5.2.5, this means we have to study 2-fold Pfister forms
over Qp. We shall see that I2Qp/I

3Qp
∼= Z/2Z; in other words, there is a unique

anisotropic 2-fold Pfister form over Qp up to isometry. We shall compute this
Pfister form explicitly, and more generally, see how to decide when a 2-fold Pfister
form over Qp is isotropic.

7.2.1. Lemma. Let q : Qn
p → Qp be an isotropic quadratic form over Qp. There

exists v = (x1, . . . , xn) ∈ Zn
p such that q(v) = 0 and there exists i ∈ {1, . . . , n}

with xi ∈ Z×
p .
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Proof. As q is isotropic, there exists 0 ̸= w = (y1, . . . , yn) ∈ Qn
p with q(w) = 0.

Let k = min{vp(y1), . . . , vp(yn)}. Setting xi = p−kyi and v = (x1, . . . , xn), we
compute that q(v) = p−2kq(w) = 0 and min{vp(x1), . . . , vp(xn)} = 0, so this
vector is as desired. □

As will often be the case, the case p ̸= 2 is the easiest, so we start with that.

7.2.2. Lemma. Let p ∈ P \ {2} and consider a1, a2, a3 ∈ Z×
p . Then

• ⟨a1, a2⟩Qp is isotropic if and only if −a1a2 is a square in Fp. If it is
anisotropic, then for any x1, x2 ∈ Qp we have

vp(a1x
2
1 + a2x

2
2) = 2 min{vp(x1), vp(x2)}.

• ⟨a1, a2, a3⟩Qp is always isotropic.

Proof. Suppose first that −a1a2 is a square in Fp. By Proposition 7.1.1 there
exists c ∈ Qp with c2 = −a1a2. But then a1(a2)

2 + a2(c
2) = a1a

2
2 − a1a

2
2 = 0, so

⟨a1, a2⟩Qp is isotropic.
Conversely, assume that there exist x1, x2 ∈ Qp with vp(a1x

2
1+a2x

2
2) ̸= 2 min{vp(x1), vp(x2)};

this is for example the case when ⟨a1, a2⟩Qp is isotropic, since then one can take
an isotropic vector (x1, x2). We shall show that −a1a2 ∈ F×2

p , finishing the proof
of the first part.

Clearly we have x1 ̸= 0 and x2 ̸= 0. If we multiply both x1 and x2 by some
element c ∈ Q×

p , both the quantities vp(a1x
2
1+a2x

2
2) and 2 min{vp(x1), vp(x2)} get

2vp(c) added to them, hence we still have vp(a1(cx1)
2+a2(cx2)

2) ̸= 2 min{vp(cx1), vp(cx2)}
Hence, by multiplying x1 and x2 by p−k where k = min{vp(x1), vp(x2)}, and
switching the role of x1 and x2 is necessary we may assume without loss of gen-
erality that 0 = vp(x1) ≤ vp(x2).

By assumption, vp(a1x
2
1+a2x

2
2) ̸= 0, and since a1, a2, x1, x2 ∈ Zp, we must have

vp(a1x
2
1 + a2x

2
2) > 0. Reducing modulo p, we see 0 = a1x1

2 + a2x2
2. But then

−a1a2 = (a2x2

x1
)2. This concludes the proof of the first point.

For the second point, recall from Exercise (2) in Lecture 4 that every nonsin-
gular 2-dimensional quadratic form over a finite field is universal. In particular

this applies to the form ⟨−a1a
−1
3 ,−a2a

−1
3 ⟩Fp , there exist x1, x2 ∈ Z×

p such that

−a1a
−1
3 x2

1 − a2a3x2
2 = 1. But then by Proposition 7.1.1, there exists x3 ∈ Q×

p

such that −a1a
−1
3 x2

1 − a2a
−1
3 x2

2 = x2
3, i.e. a1x

2
1 + a2x

2
2 + a3x

2
3 = 0. This shows that

⟨a1, a2, a3⟩Qp is isotropic. □

7.2.3. Lemma. Let p ∈ P \ {2} and a1, a2, a3, a4 ∈ Z×
p . Then

• ⟨a1, a2, pa3⟩Qp is anisotropic if and only if −a1a2 is a non-square in Fp.
• ⟨a1, a2, pa3, pa4⟩Qp is anisotropic if and only if −a1a2 and −a3a4 are both
non-squares in Fp.

Proof. Since ⟨a1, a2⟩Qp is a subform of ⟨a1, a2, pa3⟩Qp , and both ⟨a1, a2⟩Qp and
p⟨a3, a4⟩Qp are subforms of ⟨a1, a2, pa3, pa4⟩Qp , it follows from Lemma 7.2.2 that
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if −a1a2 ∈ Fp×2, then ⟨a1, a2, pa3⟩Qp and ⟨a1, a2, pa3, pa4⟩Qp are isotropic, and if
−a3a4 ∈ F×2

p , then ⟨a1, a2, pa3, pa4⟩Qp is isotropic.
Suppose now that −a1a2 and −a3a4 are not squares in Fp; it suffices to show

that ⟨a1, a2, pa3, pa4⟩Qp is anisotropic. By Lemma 7.2.2 we have for any x1, x2, x3, x4 ∈
Qp that

vp(a1x
2
1 + a2x

2
2) = 2 min{vp(x1), vp(x2)} and

vp(pa3x
2
3 + pa4x

2
4) = 1 + vp(a3x

2
3 + a4x

2
4) = 1 + 2 min{vp(x3), vp(x4)}.

If a1x
2
1 + a2x

2
2 + pa3x

3
2 + pa4x

2
4 = 0, then vp(a1x

2
1 + a2x

2
2) = vp(−pa3x

2
3 − pa4x

2
4) =

vp(pa3x
2
3+pa4x

2
4), but in view of the above two equations this is possible only when

min{vp(x1), vp(x2)} = min{vp(x3), vp(x4)} = ∞, whereby x1 = x2 = x3 = x4 = 0.
This shows that ⟨a1, a2, pa3, pa4⟩Qp is anisotropic. □

7.2.4. Proposition. Let p ∈ P \ {2} and a1, a2 ∈ Q×
p . Write a1 = pk1u1 and

a2 = pk2u2 for k1, k2 ∈ Z and u1, u2 ∈ Z×
p . The 2-fold Pfister form ⟨⟨a1, a2⟩⟩Qp is

anisotropic if and only if one of the following occurs:

• k1 is even, k2 is odd, and u1 ̸∈ F×2
p ,

• k1 is odd, k2 is even, and u2 ̸∈ F×2
p ,

• k1 is odd, k2 is odd, and −u1u2 ̸∈ F×2
p .

Proof. Since the isometry class of ⟨⟨a1, a2⟩⟩Qp is unaffected when multiplying a1
or a2 by a square, we may multiply them with a power of pk to assume without
loss of generality that k1, k2 ∈ {0, 1}.

The case where k1 = 0 or k2 = 0 follows immediately from Lemma 7.2.3. In
the remaining case k1 = k2 = 1, it suffices to use the computation rules from
Corollary 5.2.3: we have

{a1, a2}Qp = {u1p, u2p}Qp = {(u1 + u2)p,−u1u2p
2}.

Since −u1u2p
2 has even value, we have reduced to a solved case. □

7.2.5. Corollary. Let p ∈ P\{2}, let u ∈ Z×
p such that u ̸∈ F×2

p . Then ⟨⟨u, p⟩⟩Qp is
the unique anisotropic 2-fold Pfister form over Qp up to isometry. In particular,
I2Qp/I

3Qp
∼= Z/2Z.

Proof. By Proposition 7.2.4 the quadratic form ⟨⟨u, p⟩⟩Qp is anisotropic.
It remains to show that every element of IQp/I

2Qp = {0, {u, p}Qp}. By Corol-
lary 7.1.2 and in view of Corollary 5.2.3(3) it suffices to show that {a1, a2}Qp ∈
{0, {u, p}Qp} where a1, a2 ∈ {1, u, p, up}. This is now easily computed as fol-
lows, using the computation rules from Proposition 5.2.2 and Corollary 5.2.3.
Note that either −1 ∈ Q×2

p or −1 ∈ uQ×2
p (depending on whether −1 ∈ F×2

p , so
{−1, p}Qp is either equal to 0 or to {u, p}Qp).

• If a1 = 1, or if a2 = 1, or if a1 = a2 = u, then {a1, a2}Qp = 0 by
Lemma 7.2.3,

• {p, u}Qp = {u, p}Qp ,
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• {up, u}Qp = {u, up}Qp = {u, u}Qp + {u, p}Qp = 0 + {u, p}Qp = {u, p}Qp ,
• {p, p}Qp = {2p,−p2}Qp = {2p,−1}Qp = {2,−1}Qp + {p,−1}Qp = 0 +
{−1, p}Qp ∈ {0, {u, p}Qp},

• {p, up}Qp = {up, p}Qp = {u, p}Qp + {p, p}Qp ∈ {0, {u, p}Qp},
• {up, up}Qp = {2up,−(up)2}Qp = {2,−1}Qp +{up,−1}Qp ∈ {0, {up, u}Qp}.

This concludes the proof. □

We now discuss the case p = 2.

7.2.6. Proposition. ⟨⟨−1,−1⟩⟩Q2 is the unique anisotropic 2-fold Pfister form
over Q2 up to isometry. In particular, I2Q2/I

3Q2
∼= Z/2Z. Furthermore, the

following table shows for which values of a1, a2 ∈ {±1,±2,±3,±6} the form
⟨⟨a1, a2⟩⟩Qp is isotropic (0) or anisotropic (1).

a/b 1 -1 2 -2 3 -3 6 -6
1 0 0 0 0 0 0 0 0
-1 0 1 0 1 1 0 1 0
2 0 0 0 0 1 1 1 1
-2 0 1 0 1 0 1 0 1
3 0 1 1 0 1 0 0 1
-3 0 0 1 1 0 0 1 1
6 0 1 1 0 0 1 1 0
-6 0 0 1 1 1 1 0 0

Proof. To see that ⟨⟨−1,−1⟩⟩Q2 is anisotropic, suppose for the sake of a contradic-
tion that it is isotropic. By Lemma 7.2.1 this means there exist x1, . . . , x4 ∈ Zp

with x2
1 + . . . + x2

4 = 0 and (without loss of generality) x1 ∈ Z×
p . But then we

have x1
2 + . . . + x4

2 = 0 in Z2/8Z2
∼= Z/8Z and x1 ̸= 0; one verifies that this is

impossible.
To verify the table, and to prove that IQ2/I

2Q2 = {0, {−1,−1}Q2}, we com-
pute {a1, a2} for a1, a2 ∈ {±1,±2,±3,±6}. This is sufficient, given Corol-
lary 7.1.2. But this table can be established entirely via the computation rules
of Proposition 5.2.2 and Corollary 5.2.3. □

7.3. Exercises.

(1) Complete the proof of Corollary 7.1.3 and Proposition 7.2.6.
(2) Let p ∈ P.

• Show that for x, y ∈ Q×
p with vp(x− y) > vp(4x) we have x ∈ yQ×2

p .

• Conclude that for x ∈ Q×
p the set xQ×2

p is open with respect to the
p-adic topology.

(3) Determine completely the set of all prime numbers p for which the qua-
dratic form ⟨⟨15, 33⟩⟩Qp is anisotropic.
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8. Lecture 8

8.1. Classification of quadratic forms over p-adic fields. We are ready to
completely classify the quadratic forms over p-adic fields up to isometry. Re-
call that, by Witt Decomposition (Theorem 2.2.3), it suffices to classify the
anisotropic quadratic forms up to isometry.

The 1-dimensional case is immediate: over any field K, the quadratic forms
⟨a⟩K and ⟨b⟩K are isometric (for a, b ∈ K×) if and only if ab ∈ K×2. The classifi-
cation of 1-dimensional quadratic forms over Qp thus follows from Corollary 7.1.2
and Corollary 7.1.3.

8.1.1. Proposition. Let p ∈ P. Let a1, a2, b1, b2 ∈ Q×
p . Then ⟨a1, a2⟩Qp

∼=
⟨b1, b2⟩Qp if and only if a1a2b1b2 ∈ Q×2

p and {a1a2, a1b1}Q2 = 0.

Proof. This follows from Exercise (4) of Lecture 4. □

8.1.2. Proposition. Let p ∈ P. Let a1, a2, a3, b1, b2, b3 ∈ Q×
p . Then ⟨a1, a2, a3⟩Qp

is isotropic if and only if {−a1a2,−a1a3}Qp = 0. Furthermore, if ⟨a1, a2, a3⟩Qp and
⟨b1, b2, b3⟩Qp are both anisotropic, then we have b1b2b3⟨a1, a2, a3⟩Qp

∼= a1a2a3⟨b1, b2, b3⟩Qp;
in particular we have ⟨a1, a2, a3⟩Qp

∼= ⟨b1, b2, b3⟩Qp if and only if a1a2a3b1b2b3 ∈
Q×2

p .

Proof. Observe that ⟨a1, a2, a3⟩Qp
∼= a1a2a3⟨a1a2, a1a3, a2a3⟩Qp .

We have that {−a1a2,−a1a3}Qp = 0 if and only if ⟨⟨−a1a2,−a1a3⟩⟩Qp is isotropic
(Proposition 5.2.5), if and only if ⟨⟨−a1a2,−a1a3⟩⟩Qp is hyperbolic (Theorem 4.3.6),
if and only if its 3-dimensional subform ⟨a1a2, a1a3, a2a3⟩Qp is isotropic, if and only
if ⟨a1, a2, a3⟩Qp is isotropic. This shows the first statement.

Now assume that ⟨a1, a2, a3⟩Qp and ⟨b1, b2, b3⟩Qp are both anisotropic; this im-
plies by the previous paragraph that {−a1a2,−a1a3}Qp and {−b1b2,−b1b3}Qp are
both non-zero, but then by Corollary 7.2.5 or Proposition 7.2.6 they must be
equal. This implies in turn via Proposition 5.2.5 that ⟨⟨−a1a2,−a1a3⟩⟩Qp

∼=
⟨⟨−b1b2,−b1b3⟩⟩Qp . By Witt Cancellation (Theorem 2.2.2) we conclude that ⟨a1a2, a1a3, a2a3⟩Qp

∼=
⟨b1b2, b1b3, a2a3⟩Qp . The rest of the statement follows by comparing determi-
nants. □

8.1.3. Proposition. Let p ∈ P. There is a unique anisotropic 4-dimensional
quadratic form over Qp up to isometry. This form is universal.

Proof. We know from Corollary 7.2.5 or Proposition 7.2.6 that there exists a
unique anisotropic 2-fold Pfister form over Qp. Let us write this as ⟨⟨a1, a2⟩⟩Qp ,
and recall that we may choose a1 = a2 = −1 if p = 2, and if p ̸= 2, then choose
a2 = p and a1 = u ∈ Z×

p such that u ̸∈ F×2
p .

One verifies that ⟨−a1,−a2, a1a2⟩Qp represents all square classes in Q×
p /Q×2

p

except for −Q×2: if p = 2 one checks by hand that each of 1,±2,±3,±6 are
represented by ⟨1, 1, 1⟩Q2 , and if p > 2, one also verifies that ⟨−u,−p, up⟩Qp

represents u, p and up if −1 ∈ Q×2
p , or that it represents 1, p and up if −1 ∈ uQ×2

p .
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Now, take an arbitrary anisotropic 4-dimensional quadratic form q over Qp.
As ⟨a1, a2⟩⟩Qp is the unique anisotropic 2-fold Pfister form over Qp, we have that
q ∼= c⟨d,−a1,−a2, a1a2⟩K for some c, d ∈ K×. Furthermore, −d is not represented
by ⟨−a1,−a2, a1a2⟩Qp , so by the previous paragraph, we may assume d = 1. Hence
q ∼= c⟨⟨a1, a2⟩⟩Qp . Furthermore, one sees similarly as in the previous paragraph
that ⟨⟨a1, a2⟩⟩Qp is universal, in particular it represents c, and hence q ∼= ⟨⟨a1, a2⟩⟩Qp

since Pfister forms are multiplicative (Theorem 4.3.6). We have shown that every
4-dimensional quadratic form over Qp is isometric to ⟨⟨a1, a2⟩⟩Qp , and that this
form is universal. □

8.1.4. Corollary. Let p ∈ P. Every 5-dimensional quadratic form over Qp is
isotropic.

Proof. Let q be a 5-dimensional quadratic form over Qp. We have q ∼= ⟨a⟩Qp ⊥ q′

for some a ∈ Q×
p and a 4-dimensional quadratic form q′ by Proposition 1.2.9. If

q would be anisotropic, then also q′ would be anisotropic, and then by Proposi-
tion 8.1.3 it universal; in particular it represents −a. But then q must actually
have been isotropic. □

8.2. Quadratic forms under field extensions. For a field extension L/K and
a K-vector space V , the vector space VL = V ⊗L naturally becomes an L-vector
space, with dimK(V ) = dimL(VL) - see Proposition 3.1.4. Furthermore, via the
embedding V → V ⊗ L : v 7→ v ⊗ 1, we may identify V with a K-subspace of
V ⊗ L. We will now see that this gives a natural way to ‘extend’ symmetric
bilinear and quadratic forms from K to L.

8.2.1. Proposition. Consider a field K and a field extension L/K. For a sym-
metric bilinear space (V,B) over K, there exists a unique symmetric bilinear form
BL on VL = V ⊗K L such that, for all v, w ∈ V and x, y ∈ L, one has

BL(v ⊗ x,w ⊗ y) = B(v, w)xy.

Similarly, for a quadratic space (V, q) over K, there exists a unique quadratic
form qL on VL such that, for all v ∈ V and x ∈ L, one has

qL(v ⊗ x) = x2q(v) and bqL = (bq)L.

Proof. By redoing the proof of Proposition 3.1.5, using that B is a K-bilinear
map and also L × L → L : (x, y) 7→ xy is a K-bilinear map, one obtains that
there exists a unique symmetric K-bilinear map BL : VL × VL → L such that
BL(v ⊗ x,w ⊗ y) = B(v, w)xy for all v, w ∈ V and x, y ∈ L. One then readily
verifies that this map is actually also L-bilinear.

For the second statement, let us first consider uniqueness. If qL is a quadratic
form on VL such that qL(v ⊗ x) = x2q(v) for all v ∈ V and x ∈ L, then clearly
bqL = (bq)L. But qL is completely determined by its values on elementary tensors
and by bqL . This shows uniqueness.
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If char(K) ̸= 2, then the existence part of the statement follows from the fact
that q(v) = 1

2
bq(v, v) for all v ∈ V : one may just define qL(α) = 1

2
(bq)L(α, α) for

α ∈ VL. If char(K) = 2 then a more subtle argument is needed: one still has that
there exists some bilinear (but not necessarily symmetric) form B : V × V → K
such that q(v) = B(v, v) for all v ∈ V (see [EKM08, Section 7]) and one may
then set qL(α) = BL(α, α) for α ∈ VL. □

8.2.2. Definition. For a symmetric bilinear space (V,B) over K and a field ex-
tension L/K the symmetric bilinear space (V,B)L = (VL, BL) over L constructed
in Proposition 8.2.1 is called the scalar extension of (V,B) to K.

Similarly, for a quadratic space (V, q), we define the scalar extension of (V, q)
to L as the quadratic space (V, q)L = (VL, qL) constructed in Proposition 8.2.1.

For a quadratic space (V, q) over K, we will say that it is isotropic over L
(respectively anisotropic, hyperbolic, multiplicative, a Pfister form, ... over L) if
qL is isotropic (respectively anisotropic, hyperbolic, multiplicative, ...).

8.2.3. Remark. For a homogeneous degree 2 polynomial f ∈ K[X1, . . . , Xn] and
a field extension L/K, we can consider f as a polynomial over L. We then have
(Kn, qf )L = (Ln, qf ).

One verifies easily that for quadratic spaces (V, q), (V ′, q′) one has that (V, q) ∼=
(V ′, q′) implies (VL, qL) ∼= (V ′

L, q
′
L), that (q ⊥ q′)L ∼= qL ⊥ q′L, (q⊗ q′)L ∼= qL ⊗ q′L,

and (HK)L = HL. Furthermore, if (V, q) is an n-fold Pfister form, then so is
(VL, qL). Putting this together, we obtain the following:

8.2.4. Proposition. Assume char(K) ̸= 2, let L/K be a field extension. The
rule

rL/K : WK → WL : [(V, q)] 7→ [(VL, qL)]

gives a well-defined ring homomorphism. For n ∈ N, we have rL/K(InK) ⊆ InL.

8.2.5. Definition. Let L/K be a field extension. The map rL/K defined in Propo-
sition 8.2.4 is called the restriction homomorphism.

8.3. Exercises.

(1) Let p ∈ P. How many 2-dimensional anisotropic quadratic forms exist over
Qp, up to isometry? And how many 3-dimensional anisotropic quadratic
forms, up to isometry?

(2) Determine completely the set of all p ∈ P for which ⟨22, 42, 231, 345⟩Qp is
anisotropic.

(3) Let K be a field, q be a non-singular 4-dimensional quadratic form over
K of discriminant d. Show that qK[

√
d] is similar to a 2-fold Pfister form.

(4) The proof of Proposition 8.1.2 relies on Proposition 5.2.5, which in turn
relies on the deep Theorem 5.1.7, which we have not proven in this course.
Can you restructure the arguments in this section to avoid using Propo-
sition 5.2.5 or Theorem 5.1.7? (Hint: First find a proof that I3Qp = 0 for
all p ∈ P.)
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9. Lecture 9

9.1. Hilbert’s Reciprocity Law. We now start our way towards a classification
of quadratic forms over Q. As discussed in the previous lecture, given a quadratic
form over Q, we can consider the scalar extension to R or Qp, and the goal is
to understand quadratic forms over Q via its scalar extensions to R and Qp for
different primes p.

The first result is called Hilbert’s Reciprocity Law, and is a consequence of the
Quadratic Reciprocity Law. Let us first recall the Quadratic Reciprocity Law;
see any book or course on elementary number theory for a proof.

9.1.1. Theorem (Quadratic Reciprocity). Let p, q ∈ P \ {2} be such that p ̸= q.

• −1 is a square in Fp if and only if p ≡ 1 mod 4,
• 2 is a square in Fp if and only if p ≡ ±1 mod 8,
• p is a square in Fq if and only if

– p ≡ 1 mod 4 and q is a square in Fp, or
– q ≡ 1 mod 4 and q is a square in Fp, or
– p ≡ q ≡ 3 mod 4 and q is not a square in Fp.

9.1.2. Lemma. ⟨⟨−1,−1⟩⟩R is the unique anisotropic quadratic form over R up
to isometry. For any x, y ∈ R×, we have {x, y}R = 0 if and only if x > 0 or
y > 0. In particular, IR/I2R ∼= Z/2Z.
Proof. Exercise. □

To state Hilbert’s Reciprocity Law, it will be convenient to set Q∞ = R and
P′ = P ∪ {∞}.

9.1.3. Theorem (Hilbert’s Reciprocity Law). Let x, y ∈ Q×. The set

S = {p ∈ P′ | {x, y}Qp ̸= 0}
contains a finite, even number of elements.

Proof. For all but finitely many p ∈ P \ {2}, vp(x) = vp(y) = 0 (see Proposi-
tion 6.1.5). By Proposition 7.2.4 we thus obtain {x, y}Qp = 0 for all but these
finitely many odd prime numbers. This shows that this set S is always finite.

Now consider the map

⊕ : I2Q/I3Q →
⊕
p∈P′

I2Qp/I
3Qp : [q] 7→ ⊕p∈P′ [qQp ].

By the observation from the previous paragraph: any symbol {x, y}Q becomes 0
when extending scalars to all but finitely many Qp, so this map is well-defined.
In fact, since each of the individual maps [q] 7→ [qQp ] is a group homomorphism
by Proposition 8.2.4, also the map ⊕ is a group homomorphism.

Now consider the map

Σ :
⊕
p∈P′

I2Qp/I
3Qp → Z/2Z : ⊕p∈P′ [qp] 7→

∑
p∈P′

δ[qp]
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where δ[qp] = 0 if [qp] = 0 and otherwise δ[qp] = 1. This is a well-defined map, and
since I2Qp/I

3Qp
∼= Z/2Z for all p ∈ P′ by Corollary 7.2.5, Proposition 7.2.6, and

Lemma 9.1.2, it is actually a group homomorphism.
We now make the following observation: to show the theorem is to show that

the map Σ ◦ ⊕ = 0; in other words, the image of ◦ is contained in the kernel of
Σ. Since Σ ◦ ⊕ is a group homomorphism, it suffices to show that Σ ◦ ⊕ is zero
on a set of generators of I2Q/I3Q.

I2Qp/I
3Qp is generated by symbols {x, y}Q for x, y ∈ Q×. By the computation

rules for symbols (Corollary 5.2.3) we may assume that x, y ∈ Z. In fact, using
bilinearity (Proposition 5.2.2) and the fact that every integer is a product of
prime numbers and ±1, we have reduced to showing the theorem in the following
cases:

• x = y = −1,
• x = −1, y = 2,
• x = y = 2,
• x = −1, y = p for some p ∈ P \ {2},
• x = 2, y = p for some p ∈ P \ {2},
• x = y = p for some p ∈ P \ {2},
• x = p and y = q for some distinct primes p, q ∈ P \ {2}.

Each of these cases can now be checked by hand, using Theorem 9.1.1 and the
computation rules for {x, y}Qp (Proposition 7.2.4, Proposition 7.2.6, Lemma 9.1.2).
Let us consider the last of them and leave the others as an exercise.

So suppose p, q ∈ P \ {2} and let S = {p′ ∈ P′ | {p, q}Qp′
̸= 0}. By Propo-

sition 7.2.4 r ̸∈ S for any r ∈ P \ {2, p, q}. By Proposition 7.2.6 we have that
∞ ̸∈ S. By Proposition 7.2.6 we have 2 ∈ S if and only if p, q ≡ 3 mod 4.
Furthermore, we compute using Proposition 7.2.4 and Theorem 9.1.1 that

p ∈ S ⇔ q is not a square in Fp

⇔

{
p is a square in Fq if p ≡ q ≡ 3 mod 4

p is not a square in Fq otherwise

⇔

{
q ̸∈ S if p ≡ q ≡ 3 mod 4

q ∈ S otherwise
.

From this we conclude that |S| ∈ {0, 2}, and thus in particular S contains an
even number of elements, as desired. □

9.2. Approximation. Recall from elementary number theory the Chinese Re-
mainder Theorem:

9.2.1. Theorem. Let S ⊆ P be a set of prime numbers and n ∈ N. For each
p ∈ S, let ap ∈ Z. Then there exists a ∈ Z such that a ≡ ap mod pn for all p ∈ S.

This theorem has the following reformulation in the language of p-adic numbers.
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9.2.2. Corollary. Let S ⊆ P be a set of prime numbers and n ∈ N. For each
p ∈ S, let xp ∈ Zp. Then there exists x ∈ Z such that vp(x − xp) > n for all
p ∈ S.

Proof. Exercise. □

In other words, we know that (by construction) we can for each p ∈ P ap-
proximate p-adic integers arbitrarily closely by rational integers, but in fact, one
can do so for a finite set of prime numbers simultaneously. We now prove the
following variation for rational numbers.

9.2.3. Theorem (Artin Approximation). Let S ⊆ P be finite and fix q ∈ P \ S.
Let n ∈ N, and for each p ∈ S, fix xp ∈ Qp, and also fix x∞ ∈ R. Then there
exists x ∈ Q such that

• for all p ∈ S, one has vp(x− xp) > n,
• |x− x∞| < 1/n,
• for all r ∈ P \ (S ∪{q}) we have x ∈ Zr. In other words, the denominator
of x is not divisible by and primes outside of S ∪ {q}.

Proof. We may replace the number n in the statement by a larger natural number,
as that will only strengthen the outcome. In particular, we may assume without
loss of generality n ≥ −vp(xp) for all p ∈ S. Furthermore, since we can arbitarily
approximate an element in Qp by an element of Q with denominator a power of
p, we may also assume that xp ∈ Q with denominator a power of p. Similarly, by
increasing n if needed, we may assume that x∞ ∈ Q with denominator a power
of q.

For each p ∈ S, we shall show the existence of an element dp ∈ Q whose
denominator is a power of q and such that

vp(dp − 1) > 2n, vp′(dp) > 2n for all p′ ∈ S \ {p}, and |dp| <
1

n(|S| + 1)|xp|
,

and furthermore an element d∞ ∈ Q whose denominator is a power of q and such
that

vp(d∞) > 2n for all p ∈ S, and |d∞ − 1| < 1

n(|S| + 1)|x∞|
.

Once we have found these elements, we will be almost done: it suffices to set
x =

∑
p∈S xpdp + x∞d∞. We then compute that, for p ∈ P,

vp(x− xp) = vp(x− xpdp + xpdp − xp) ≥ min{vp(x− xpdp), vp(xpdp − xp)}

= min{vp(
∑

p′∈(S∪{∞})\{p}

xp′dp′), vp(xp) + vp(dp − 1)}

≥ min{ min
p′∈(S∪{∞})\{p}

{vp(xp′) + vp(dp′)}, vp(xp) + vp(dp − 1)} > n
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by construction of the dp’s, and similarly

|x− x∞| ≤ |x− x∞d∞| + |x∞d∞ − x∞|

≤
∑
p∈S

|xp||dp| + |x∞||d∞ − 1| < 1

n
.

Thus, it now remains to show that such dp can be constructed for each p ∈ S∪{∞}
individually.

Consider first p ∈ S. Since the multiplicative group (Z/p2nZ)× is finite, and∏
p′∈S\{p} p

′ represents an invertible element in Z/p2nZ, there exists N > 2n

such that (
∏

p′∈S\{p} p
′)N ≡ 1 mod p2n. Similarly, since q represents an invertible

element in Z/p2nZ, there exist arbitrarily large M ∈ N with qM ≡ 1 mod p2n. In
particular, we can take M large enough so that |(

∏
p′∈S\{p} p

′)Nq−M | < (n(|S| +

1)|x∞|)−1. Now dp = (
∏

p′∈S\{p} p
′)Nq−M is as desired.

Finally, again by similar arguments, we may choose M ∈ N large enough such
that qM ≡ 1 mod p2n for all p ∈ S, at the same time |q−M | ≤ (n(|S| + 1)|x∞|)−1.
Then d∞ = 1 − q−M is as desired. □

We will need later also the following strengthening of Theorem 9.2.1, often
referred to as Dirichlet’s Theorem on (Primes in) Arithmetic Progressions.

9.2.4. Theorem (Dirichlet’s Theorem). Let m,n ∈ N be coprime. There exist
infinitely many p ∈ P with p ≡ n mod m.

Proof. See for example [Neu99, Section I.10, Exercise 1]. □

Note that in the above theorem, we may replace one congruence condition with
finitely many, as long as they pertain to coprime moduli, in view of Theorem 9.2.1.

9.3. Exercises.

(1) Give a proof of Lemma 9.1.2.
(2) Consider Qp with the p-adic topology, Q∞ = R with the euclidean topol-

ogy, and consider
∏

p∈P′ Qp with the induced product topology. Show that
the image of the diagonal embedding

Q →
∏
p∈P′

Qp : x 7→ (x)p∈P′

is dense with respect to the product topology.
(3) Use Theorem 9.2.4 to show a converse to Theorem 9.1.3: for every finite

set S ⊆ P′ of even cardinality, there exist x, y ∈ Q× such that S = {p ∈
P′ | {x, y}Qp ̸= 0}.

(4) Use Exercise (9) from Lecture 6 to show that the following are equivalent
for n ∈ N and f ∈ Z[X1, . . . , Xn]:

• f has a zero in Z/mZ for all m ∈ N,
• f has a zero in Zp for all p ∈ P.
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(5) Show that the polynomial f(X) = (X2 − 13)(X2 − 17)(X2 − 221) has no
zero in Z, but has a zero in R and in Z/mZ for every m ∈ N.

10. Lecture 10

10.1. The Hasse-Minkowski Theorem. We are ready to phrase and proof the
Hasse-Minkowski Theorem.

10.1.1. Theorem (Hasse-Minkowski). Let q be an anisotropic quadratic form over
Q. Then there exists p ∈ P′ such that qQp is anisotropic.

In other words, if one wants to check whether a quadratic form over q is
isotropic, if suffices to prove that it is isotropic over Qp for all p ∈ P′. This
might a priori seem like an equally hard problem since one needs to consider
infinitely many prime numbers p ∈ P′, but recall that if dim(q) ≥ 3, then q
contains a subform isometric to ⟨a1, a2, a3⟩Q for some a1, a2, a3 ∈ Z \ {0}, and
then qQp is automatically isotropic for all p ∈ P \ {2} which do not divide a1, a2
and a3 by Lemma 7.2.2. This leaves only finitely many prime numbers to check,
and checking isotropy of quadratic forms over Qp can be done algorithmically, as
explained in lectures 7 and 8.

Theorem 10.1.1 has the following immediate consequence, showing that we
obtain a complete classifiction of quadratic forms over Q via the classification of
quadratic forms over each Qp.

10.1.2. Corollary. Let q1, q2 be quadratic forms over Q. If (q1)Qp
∼= (q2)Qp for all

p ∈ P′, then q1 ∼= q2. In particular, the group homomorphism

WQ →
∏
p∈P′

WQp : [q] 7→ ([qQp ])p∈P′

is injective.

Proof. Exercise. □

Proof of Theorem 10.1.1. Let n = dim(q). By Corollary 1.2.10 we may assume
without loss of generality q = ⟨a1, . . . , an⟩Q for some a1, . . . , an ∈ Q, and in fact
we have a1, . . . , an ∈ Q× if we assume that q is anisotropic. By replacing q
with a similar quadratic form (which does not affect isotropy over Q or any field
extension) we may assume that an = 1 and a2, . . . , an are square-free integers.

We now continue by making a case distinction on n. For n = 1 there is nothing
to prove: ⟨1⟩Qp is anisotropic for all p ∈ P′.

Assume n = 2, i.e. q = ⟨1, a1⟩Q. By Exercise (4) of Lecture 1 we have that
−a1 ̸∈ Q×2. This implies that either a1 > 0, in which case −a1 ̸∈ R×2 and hence
qR is anisotropic, or there is p ∈ P which divides −a1 an odd number of times,
whereby −a1 ̸∈ Q×2

p and hence qQp is anisotropic. This concludes the proof for
n = 2.

Assume n = 3. We assume that q = ⟨1, a1, a2⟩Q is isotropic over Qp for all
p ∈ P′ and we need to show that q itself is isotropic. By switching the roles of
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a1 and a2, we may assume |a1| ≤ |a2|. In view of Corollary 2.1.7 we equivalently
need to show that ⟨1, a1⟩Q represents −a2, assuming it does so over Qp for all
p ∈ P′.

We proceed by induction on |a2|. If |a2| = |a1| = 1, then either a1 = −1
or a2 = −1, in which case q is isotropic, or a1 = a2 = 1, but in this case
qR = ⟨1, 1, 1⟩R is anisotropic, contradicting the assumption. Now assume |a2| > 1.
For each prime number p dividing a2 there exists c ∈ Z with c2 ≡ −a1 mod p:
if p divides a1 one may just take c = 0, if p = 2 and p does not divide a1 one
may take c = 1, and otherwise this follows from the fact that qQp is isotropic
and Lemma 7.2.2. Since a2 is square-free, by the Chinese Remainder Theorem
(Theorem 9.2.1) we find c ∈ Z such that c2 ≡ −a1 mod a2. Clearly we may even
find such c with |c| ≤ |a2|/2.

It follows that c2 = −a1 + a2b for some b ∈ Z, whereby a2b ∈ DQ(⟨1, a1⟩Q).
Furthermore, we compute that

|b| =

∣∣∣∣c2 + a1
a2

∣∣∣∣ ≤ ∣∣∣∣ c2a2
∣∣∣∣ +

∣∣∣∣a1a2
∣∣∣∣ ≤ |a2|

4
+ 1 < |a2|.

If we had b ̸∈ DQ(⟨1, a1⟩Q), then by the induction hypothesis there exists p ∈ P′

such that b ̸∈ DQp(⟨1, a1⟩Qp). But since ⟨1, a1⟩Qp is multiplicative and a2b ∈
DQp(⟨1, a1⟩Qp), it would follow that a2 ̸∈ DQp(⟨1, a1⟩Qp), contradicting the as-
sumption that q = ⟨1, a1, a2⟩Q is isotropic over Qp for all p ∈ P′. Hence we
must have b ∈ DQ(⟨1, a1⟩Q), and then by the multiplicativity of DQ(⟨1, a1⟩Q) also
a2 = (a2b)/b ∈ DQ(⟨1, a1⟩Q), hence we are done. This concludes the proof for the
case n = 3.

Assume n = 4. We assume that q = ⟨a1, a2, a3, a4⟩Q is isotropic over Qp for all
p ∈ P′ and show that q is itself isotropic.

Let T = {2,∞} ∪ {p ∈ P | p | a1a2a3a4}. This is a finite set. By assumption
⟨a1, a2⟩Qp and −⟨a3, a4⟩Qp represent a common element in Qp for each p ∈ P. In
view of the classification of square classes (Corollary 7.1.2 and Corollary 7.1.3)
we may assume there exists for each p ∈ P′ an element zp ∈ Z∩DQp(⟨a1, a2⟩Qp)∩
DQp(−⟨a3, a4⟩Qp) with, for p ∈ P, vp(zp) ≤ 1. By Theorem 9.2.4 we may find a
prime q ∈ P \ T and ε ∈ {1,−1} such that, for z = εq, zz∞ > 0, z ≡ z2 mod 16
and z ≡ zp mod p2 for p ∈ T \ {2,∞}. It follows by Proposition 7.1.1 that
zzp ∈ Q×2

p for all p ∈ T , whence z ∈ DQp(⟨a1, a2⟩Qp)∩DQp(−⟨a3, a4⟩Qp) and thus
⟨a1, a2,−z⟩Qp and ⟨z,−a3,−a4⟩Qp are isotropic for all p ∈ T . Furthermore, in
view of Lemma 7.2.2, ⟨a1, a2,−z⟩Qp and ⟨z,−a3,−a4⟩Qp are also isotropic for all
p ∈ P \ (T ∪ {q}). Finally, by Theorem 9.1.3 we conclude that ⟨a1, a2,−z⟩Qq and
⟨z,−a3,−a4⟩Qq must also be isotropic, and then by the case n = 3 we conclude
that ⟨a1, a2,−z⟩Q and ⟨z,−a3,−a4⟩Q are isotropic, and hence in particular q is
isotropic. This concludes the proof for the case n = 4.

Assume n ≥ 5. We assume that q = ⟨a1, . . . , an⟩Q is isotropic over Qp for all p ∈
P′ and show that q itself is isotropic. Consider T = {2,∞}∪{p ∈ P | a3a4 . . . an}.
This is a finite set. As in the case n = 4, we find for each p ∈ P′ an element
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zp ∈ Z ∩ DQp(⟨a1, a2⟩Qp) ∩ DQp(−⟨a3, . . . , an⟩Qp). Let us write zp = a1x
2
p + a2y

2
p

for some xp, yp ∈ Qp; we may further assume xp, yp ̸= 0 (see e.g. Exercise (4) of
Section 2). By Theorem 9.2.3 we may find x, y ∈ Q such that

vp(x− xp) > max{vp(xp), vp(4zp(a1xp)
−1)} for all p ∈ T \ {∞},

vp(y − yp) > max{vp(yp), vp(4zp(a2yp)−1)} for all p ∈ T \ {∞},
|x− x∞| < min{|x∞|, |z∞(4a1x∞)−1|}, and

|y − y∞| < min{|y∞|, |z∞(4a2y∞)−1|}.

Now set z = a1x
2 + a2y

2. It is clear that z ∈ DQ(⟨a1, a2⟩Q) by construction,
and we shall show that z ∈ zpQ×2

p for all p ∈ T , from which it follows that
z ∈ DQp(−⟨a3, . . . , an⟩Qp) for all p ∈ T and thus ⟨z,−a3, . . . ,−an⟩Qp is isotropic.
Since we automatically have that ⟨z,−a3, . . . ,−an⟩Qp is isotropic for p ∈ P \ T
(since already −⟨a3, . . . , an⟩Qp is isotropic by Lemma 7.2.2), we obtain by the
induction hypothesis that ⟨z,−a3, . . . ,−an⟩Q is isotropic. We conclude that q is
isotropic, as desired.

It remains to show the claim that z ∈ zpQ×2
p for all p ∈ T . First consider

p ̸= ∞. Observe that vp(x + xp) ≥ vp(xp) and vp(y + yp) ≥ vp(yp). We compute
that

vp(z − zp)

= vp(a1x
2 + a2y

2 − a1x
2
p − a2y

2
p)

= vp(a1(x− xp)(x + xp) + a2(y − yp)(y + yp))

≥ min{vp(a1) + vp(x− xp) + vp(x + xp), vp(a2) + vp(y − yp) + vp(y + yp)}
> vp(4zp)

from which it follows that z ∈ zpQ×2
p by Exercise (2) of Section 7. For p = ∞,

we compute similarly that

|z − z∞| ≤ |a1||x− x∞||x + x∞| + |a2||y − y∞||y + y∞| < |z∞|

whereby z and z∞ must have the same sign and thus z ∈ z∞R×2. □

10.2. Exercises.

(1) Give a proof of Corollary 10.1.2.
(2) Compute |I3Q/I4Q|.
(3) Let K be a field with char(K) ̸= 2. We say that two 2-fold Pfister forms q1

and q2 over K are linked if there exists a, b, c ∈ K× such that q1 ∼= ⟨⟨a, b⟩⟩K
and q2 ∼= ⟨⟨a, c⟩⟩K .

• Show that two 2-fold Pfister forms ⟨⟨a, b⟩⟩K and ⟨⟨c, d⟩⟩K are linked if
and only if the quadratic form ⟨a, b,−ab,−c,−d, cd⟩K is isotropic, if
and only if there exist e, f ∈ K× such that {a, b}K+{c, d}K = {e, f}K
in I2K/I3/K.

• Show that over K = Q, any two 2-fold Pfister forms are linked.
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• Is it true that, for any n ∈ N and 2-fold Pfister forms q1, . . . , qn over
Q, there exists a, b1, . . . , bn ∈ Q× such that qi ∼= ⟨⟨a, bi⟩⟩Q for all i?
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strong triangle inequality, 32
subform, 9
symbol, 26

symmetric bilinear
form, 3
space, 2

tensor product
of symmetric bilinear spaces, 17
of vector spaces, 15

totally isotropic, 9

universal, 5

Witt equivalent, 19
Witt index, 12
Witt ring, 20
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