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Existentially definable sets

Let K be a field, D C K" for some n € N.

D is called existentially definable (in K") if there exist r,m € N and
polynomials f1,...,f, € K[X1,...,Xn, Y1,..., Ym] such that

D={xeK"|JyeK™: fi(x,y)=...=f(x,y) =0}
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Existentially definable sets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets.
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Existentially definable sets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets.
m The set of squares of the field K:

OK={xe€K|3yecK:x=y?}.
m For K = Q, the set of non-negative rationals:
on:{x6@|Elyl,...,y46@:x=y12+y22+y32+yf}.

m (essentially by J. Robinson, [Rob49]) For K = Q and a prime
number p, the subring Z,) = { | x € Z,y € Z\ pZ}. E.g. i
p = 3 mod 4, then

Zipy={x€Q| I, y2,y3 € Q: 1+(p—1)px® = y2 +y3 +py3}).
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Existentially definable sets

Some standard properties:

m If D1, D, C K™ are existentially definable, then so are D; U Dy
and D1 N Ds.
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Existentially definable sets

Some standard properties:

m If D1, D, C K™ are existentially definable, then so are D; U Dy
and D1 N Ds.

m If D C K™ is existentially definable and E C K™ is
existentially definable, then

U{xe K" (x,y) e D} ={xe K" |3y € E: (x,y) € D}
yeE

is existentially definable in K".
m If K is not algebraically closed, then every existentially definable
subset of K" is of the form

{xe K"| 3y e K™": f(x,y) =0}
forsome meN, f € K[Xy,...,Xn, Y1,-.., Ym].
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Existentially definable sets

m In general, to decide whether a given subset of a field K (or
more generally, a subset of K”) is existentially definable, is hard.
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Existentially definable sets

m In general, to decide whether a given subset of a field K (or
more generally, a subset of K”) is existentially definable, is hard.

m If K has a “rich arithmetic” (e.g. number field), many subsets
could be existentially definable.

Question 1.1 J

Is Z existentially definable in Q7
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Existentially definable sets

Let n € N. A subset D of K" is called universally definable (in K") if
K"\ D is existentially definable in K”. In other words, D is
universally definable if there exist r, m € N and polynomials

fi,....fr e K[X1,...,Xn, Y1,..., Ym] such that

D={xeK"|VyeK": fi(x,y)#0or ... or f(x,y) # 0}.
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Existentially definable sets

Let n € N. A subset D of K" is called universally definable (in K") if
K"\ D is existentially definable in K”. In other words, D is
universally definable if there exist r, m € N and polynomials

fi,....fr e K[X1,...,Xn, Y1,..., Ym] such that

D={xeK"|Vye K": fi(x,y)#0or ... or f(x,y) # 0}.

Theorem 1.2 (Koenigsmann, 2016)

Z is universally definable in Q.

Theorem 1.3 (Park, 2013)

Let K be a number field. Denote by O the ring of integers of K. Then Oy is
universally definable in K.
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Existentially definable sets

Let K be a global field (number field or function field in one variable

over a finite field).
Denote by V(K) the set of all Z-valuations on K. For a finite subset
S C V(K), define the ring of S-integers of K to be

oszﬂo

veV(K)\
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Existentially definable sets

Let K be a global field (number field or function field in one variable
over a finite field).

Denote by V(K) the set of all Z-valuations on K. For a finite subset
S C V(K), define the ring of S-integers of K to be

oszﬂo

veV(K)\

Let K be a global function field of odd characteristic. For any finite S C V(K), Os is
universally definable in K.

Theorem 1.4 (Eisentrager-Morrison, 2018) J

E.g. F4[T] is universally definable in Fg(T).

&
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QOutline

Plan for the rest of the talk:

m Give a proof of Koenigsmann's Theorem (universal definability of

Z in Q).
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QOutline

Plan for the rest of the talk:

m Explain how (properties of) quaternion algebras over global and
local fields play a role, building on ideas of Poonen &
Koenigsmann.

m Give a proof of Koenigsmann's Theorem (universal definability of

Z in Q).
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QOutline

Plan for the rest of the talk:

m Explain how (properties of) quaternion algebras over global and
local fields play a role, building on ideas of Poonen &
Koenigsmann.

m Give a proof of Koenigsmann's Theorem (universal definability of
Z in Q).

m Discuss generalisations to other global fields and function fields
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The ramification set

Denote by PP the set of prime numbers, and set P’ = PU {cc}. Define

For a, b € Q*, define the ramification set of the quaternion algebra
(a; b)o:

A(a,b) = {p € P'| (a, b)g, is non-split}.
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The ramification set

Denote by PP the set of prime numbers, and set P’ = PU {cc}. Define

For a, b € Q*, define the ramification set of the quaternion algebra

(a, b)o:
A(a,b) = {p € P'| (a, b)g, is non-split}.

Recall: (a, b)g = (ac?, bd?)q for a, b,c,d € Q*, whence
A(a, b) = A(ac?, bd?).
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The ramification set

The ramification set can be computed precisely as follows:

Proposition 2.1 (Computation of the ramification set)

Let a,b € Z\ {0} be square-free.

1. co € A(a,b) if and only if a < 0 and b < 0.

2. For p € P\ {2} we have p € A(a, b) if and only if one of the following holds
mpla ptb, and b is not a square mod p
mpl|b pta, and ais not a square mod p
m p|a p|b, and —abp=2 is not a square mod p

3. If2| b and a=5 mod 8, then 2 € A(a, b).

4. (Hilbert Reciprocity) |A(a, b)| is an even natural number.

Note: we can scale any a, b € Q* by a square to obtain square-free

elements of Z \ {0}.

Unrsy ot anorp
- fiien
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The ramification set

Lemma 2.2

Let p,q be odd prime numbers such that q =5 mod 8 and q is not a square modulo p.
We have:

A(q,2p) = {2, p}-

[87 e
11/22



The ramification set

Lemma 2.2

Let p,q be odd prime numbers such that q =5 mod 8 and q is not a square modulo p.
We have:

A(q,2p) = {2, p}-

Corollary 2.3
For every odd prime number p we can find a € Zé) such that A(1 + 4a%,2p) = {2, p}.

| - o 11/22



Existentially definable semilocal building
blocks
For a, b, c € Q*, define
A¢(a,b) ={p e A(a,b) NP | vp(c) is odd}
and for a, b, c € Q*, set

Jc(aa b) = m pZ(p) C Q.
pEA©(a,b)
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Existentially definable semilocal building
blocks
For a, b, c € Q*, define
A¢(a,b) ={p e A(a,b) NP | vp(c) is odd}
and for a, b, c € Q*, set

Jc(aa b) = m pZ(p) C Q.
pEA©(a,b)

Theorem 2.4
There exists an existentially definable set D C Q* such that, for all a,b,c € Q*, we have

J(a,b) ={x € Q| (x,a,b,c) € D}

Relies on work by Poonen, Koenigsmann.
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Existential to universal

The following observation (implicit in Koenigsmann's work) links
uniform existential definability of prime ideals with universal
definability.

Lemma 3.1
If UpelP’ PZ(p) is existentially definable in Q, then Z is universally definable in Q.

e rerad 13/22



Proof of main theorem

Proposition 3.2

Setting
® = {(1+4a%,2b) | 3,b € 23 }

we have

U pZ(P) = ( U JX(X y J2y(><,y)> @] 22(2)
(

peP x,y)EP
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Proof of main theorem

Proposition 3.2

Setting
& ={(1+4a%2b)|abe Z(z)}

we have

U pZp) = ( U 7y J2y(><,y)> U 2Z5).

pPEP (x,y)ed

Since the set on the right is existentially definable, so is the set on
the left. The universal definability of Z in Q now follows from the
previous lemma.

e rerad 14/22




Quantitative aspects

We have shown that there exist m € N and f € Q[X, Y1,..., Y]
such that

Z={xeQ|Vy eQ":f(x,y) #0}.

What is the value of m in this description? How low can it be
chosen?
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Quantitative aspects

We have shown that there exist m € N and f € Q[X, Y1,..., Y]
such that

Z={xeQ|Vy eQ":f(x,y) #0}.

What is the value of m in this description? How low can it be
chosen?

m Koenigsmann's original description: m = 500,
m published in [Daa21] with m = 38,

m improved by Sun and Zhang to m = 32 [ZS21],
m in PhD thesis: m = 19.

[

m < 1 is not possible.
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Generalisation to all global fields

The approach extends to general global fields (i.e. number fields or
function fields in one variable over a finite field). One needs to
replace concepts adequately:
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Generalisation to all global fields

The approach extends to general global fields (i.e. number fields or
function fields in one variable over a finite field). One needs to
replace concepts adequately:

m P’ becomes the set of places of the field, P the set of finite
places (= V(K)),

m in characteristic 2, a different presentation of quaternion
algebras is needed.

The following ingredients then extend with inessential changes:

m Hilbert Reciprocity law
m existential definability of the sets J°(a, b)
m basis for results by Park and Eisentrager-Morrison

Theorem 4.1
Let K be a global field. For any finite S C V(K), Os is universally definable in K.

ol 16/22



Generalisation to all global fields

m Rings of S-integers of a global field K are precisely integrally
closed, finitely generated subrings of K with K as fraction field.
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Generalisation to all global fields

m Rings of S-integers of a global field K are precisely integrally
closed, finitely generated subrings of K with K as fraction field.

m In fact, one can obtain the following (suggested by Dittmann):

Corollary 4.2

If R is a finitely generated domain with a global field K as fraction field, then R is
universally definable in K.

v rerad 17/22



Abstraction of the question

We us.ed thz_xt 7 = ﬂpep Z(py, i.e. Z is the intersection of all discrete
valuations rings of Q.

Question 4.3

Given a field K, which intersections of valuation rings can we define
existentially/universally?
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Abstraction of the question

We us.ed the_lt 7 = ﬂpep Z(py, i.e. Z is the intersection of all discrete
valuations rings of Q.

Question 4.3

Given a field K, which intersections of valuation rings can we define
existentially/universally?

There are two key ingredients in our proof:

m Existential definability of ﬂveAc(&b) m, uniformly in a, b, c.

m Good description of ramification sets, in particular a Reciprocity
Law

|- i
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Function fields in one variable over
other fields

(joint work with Philip Dittmann)

Let F be a function field in one variable over a field K (let's say
char(K) # 2 for now). Let V be the set of Z-valuations which are
trivial on K. Under which conditions can we still universally define
rings of S-integers?
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Let F be a function field in one variable over a field K (let's say
char(K) # 2 for now). Let V be the set of Z-valuations which are
trivial on K. Under which conditions can we still universally define
rings of S-integers?

m If K is a finite field, then K has 2-cohomological dimension 1
and a quaternion algebra (a, b)r can be seen as an element o
H?(F,7Z/27). If K is a field of 2-cohomological dimension n,
one should work with elements of H"t1(F,7Z/27).
H"1(F,7Z/27) is generated by symbols (a1, ..., ans1)F with
ai,...ant1 € F*. We define A(ay,...,an+1) and
A<(ai,...,ap+1) analogously.

f
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Function fields in one variable over
other fields

(joint work with Philip Dittmann)

Let F be a function field in one variable over a field K (let's say
char(K) # 2 for now). Let V be the set of Z-valuations which are
trivial on K. Under which conditions can we still universally define
rings of S-integers?

m If K is a finite field, then K has 2-cohomological dimension 1
and a quaternion algebra (a, b)r can be seen as an element o
H?(F,7Z/27). If K is a field of 2-cohomological dimension n,
one should work with elements of H"t1(F,7Z/27).
H"1(F,7Z/27) is generated by symbols (a1, ..., ans1)F with
ai,...ant1 € F*. We define A(ay,...,an+1) and
A<(ai,...,ap+1) analogously.

m There should be an existential formula associating to

cooyant1,d) € (FX)™2 the subset Nvead(a

1“w3n+1)nlv'

f
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Function fields in one variable over
other fields

If F/K a function field in one variable and K is of 2-cohomological
dimension n, then the natural sequence

H™Y(F,Z/2Z) — @ H"(Fv,Z/2Z) — H"(K,Z/2Z) — 0
vey

is exact. If additionally all elements of H"*1(F,7Z/27Z) are symbols
(a1,...,an+1)F, then we obtain a sort of Reciprocity Law for these
symbols.
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Function fields in one variable over
other fields

Some examples where this works:

Theorem 4.4

Let K be a field with char(K) # 2 satisfying one of the following:
m K is a global field,
m K is a local field, i.e. a finite extension of Q, or Fp((T)) for some prime p,
m K is a pseudo-algebraically closed, non-quadratically closed field.

Then for any function field in one variable F /K and any finite set S of Z-valuations on F
trivial on K, the ring of S-integers Os is universally definable.

v
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Function fields in one variable over
other fields

Some examples where this works:

Theorem 4.4

Let K be a field with char(K) # 2 satisfying one of the following:
m K is a global field,
m K is a local field, i.e. a finite extension of Qp or Fp((T)) for some prime p,
m K is a pseudo-algebraically closed, non-quadratically closed field.
Then for any function field in one variable F /K and any finite set S of Z-valuations on F

trivial on K, the ring of S-integers Os is universally definable.
v

Corollary 4.5
Let K be a field with char(K) # 2 satisfying one of the following:
m K is a local field,
m K is a pseudo-algebraically closed, non-quadratically closed field.

Let R be a domain which is finitely generated as a K-algebra and whose fraction field F
is a function field in one variable over K. Then R is universally definable in F.
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