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Existentially definable sets

Let K be a field, D ⊆ Kn for some n ∈ N.

D is called existentially definable (in Kn) if there exist r ,m ∈ N and
polynomials f1, . . . , fr ∈ K [X1, . . . ,Xn,Y1, . . . ,Ym] such that

D = {x ∈ Kn | ∃y ∈ Km : f1(x , y) = . . . = fr (x , y) = 0}.
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Existentially definable sets
Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets.

The set of squares of the field K :

�K = {x ∈ K | ∃y ∈ K : x = y2}.

For K = Q, the set of non-negative rationals:

Q≥0 = {x ∈ Q | ∃y1, . . . , y4 ∈ Q : x = y2
1 + y2

2 + y2
3 + y2

4 }.

(essentially by J. Robinson, [Rob49]) For K = Q and a prime
number p, the subring Z(p) = { xy | x ∈ Z, y ∈ Z \ pZ}. E.g. if
p ≡ 3 mod 4, then

Z(p) = {x ∈ Q | ∃y1, y2, y3 ∈ Q : 1+(p−1)px2 = y2
1 +y2

2 +py2
3 }.
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Existentially definable sets
Some standard properties:

If D1,D2 ⊆ Kn are existentially definable, then so are D1 ∪ D2

and D1 ∩ D2.

If D ⊆ Kn+m is existentially definable and E ⊆ Km is
existentially definable, then⋃

y∈E
{x ∈ Kn | (x , y) ∈ D} = {x ∈ Kn | ∃y ∈ E : (x , y) ∈ D}

is existentially definable in Kn.

If K is not algebraically closed, then every existentially definable
subset of Kn is of the form

{x ∈ Kn | ∃y ∈ Km : f (x , y) = 0}

for some m ∈ N, f ∈ K [X1, . . . ,Xn,Y1, . . . ,Ym].
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Existentially definable sets

In general, to decide whether a given subset of a field K (or
more generally, a subset of Kn) is existentially definable, is hard.

If K has a “rich arithmetic” (e.g. number field), many subsets
could be existentially definable.

Question 1.1

Is Z existentially definable in Q?
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Existentially definable sets

Let n ∈ N. A subset D of Kn is called universally definable (in Kn) if
Kn \ D is existentially definable in Kn. In other words, D is
universally definable if there exist r ,m ∈ N and polynomials
f1, . . . , fr ∈ K [X1, . . . ,Xn,Y1, . . . ,Ym] such that

D = {x ∈ Kn | ∀y ∈ Km : f1(x , y) 6= 0 or . . . or fr (x , y) 6= 0}.

Theorem 1.2 (Koenigsmann, 2016)

Z is universally definable in Q.

Theorem 1.3 (Park, 2013)

Let K be a number field. Denote by OK the ring of integers of K . Then OK is
universally definable in K .
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Existentially definable sets

Let K be a global field (number field or function field in one variable
over a finite field).
Denote by V(K ) the set of all Z-valuations on K . For a finite subset
S ⊆ V(K ), define the ring of S-integers of K to be

OS =
⋂

v∈V(K)\S

Ov .

Theorem 1.4 (Eisenträger-Morrison, 2018)

Let K be a global function field of odd characteristic. For any finite S ⊆ V(K), OS is
universally definable in K .

E.g. Fq[T ] is universally definable in Fq(T ).
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Outline

Plan for the rest of the talk:

Explain how (properties of) quaternion algebras over global and
local fields play a role, building on ideas of Poonen &
Koenigsmann.

Give a proof of Koenigsmann’s Theorem (universal definability of
Z in Q).

Discuss generalisations to other global fields and function fields
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The ramification set

Denote by P the set of prime numbers, and set P′ = P∪ {∞}. Define
Q∞ = R.

For a, b ∈ Q×, define the ramification set of the quaternion algebra
(a, b)Q:

∆(a, b) = {p ∈ P′ | (a, b)Qp is non-split}.

Recall: (a, b)Q ∼= (ac2, bd2)Q for a, b, c , d ∈ Q×, whence
∆(a, b) = ∆(ac2, bd2).
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The ramification set

The ramification set can be computed precisely as follows:

Proposition 2.1 (Computation of the ramification set)

Let a, b ∈ Z \ {0} be square-free.

1. ∞ ∈ ∆(a, b) if and only if a < 0 and b < 0.

2. For p ∈ P \ {2} we have p ∈ ∆(a, b) if and only if one of the following holds

p | a, p - b, and b is not a square mod p
p | b, p - a, and a is not a square mod p
p | a, p | b, and −abp−2 is not a square mod p

3. If 2 | b and a ≡ 5 mod 8, then 2 ∈ ∆(a, b).

4. (Hilbert Reciprocity) |∆(a, b)| is an even natural number.

Note: we can scale any a, b ∈ Q× by a square to obtain square-free
elements of Z \ {0}.
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The ramification set

Lemma 2.2

Let p, q be odd prime numbers such that q ≡ 5 mod 8 and q is not a square modulo p.
We have:

∆(q, 2p) = {2, p}.

Corollary 2.3

For every odd prime number p we can find a ∈ Z×
(2)

such that ∆(1 + 4a2, 2p) = {2, p}.
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Existentially definable semilocal building
blocks
For a, b, c ∈ Q×, define

∆c(a, b) = {p ∈ ∆(a, b) ∩ P | vp(c) is odd}

and for a, b, c ∈ Q×, set

Jc(a, b) =
⋂

p∈∆c (a,b)

pZ(p) ⊆ Q.

Theorem 2.4

There exists an existentially definable set D ⊆ Q4 such that, for all a, b, c ∈ Q×, we have

Jc (a, b) = {x ∈ Q | (x , a, b, c) ∈ D}

Relies on work by Poonen, Koenigsmann.
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Existential to universal

The following observation (implicit in Koenigsmann’s work) links
uniform existential definability of prime ideals with universal
definability.

Lemma 3.1

If
⋃

p∈P pZ(p) is existentially definable in Q, then Z is universally definable in Q.
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Proof of main theorem

Proposition 3.2

Setting
Φ = {(1 + 4a2, 2b) | a, b ∈ Z×

(2)
}

we have ⋃
p∈P

pZ(p) =

 ⋃
(x,y)∈Φ

Jx (x , y) ∩ J2y (x , y)

 ∪ 2Z(2).

Since the set on the right is existentially definable, so is the set on
the left. The universal definability of Z in Q now follows from the
previous lemma.
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Quantitative aspects

We have shown that there exist m ∈ N and f ∈ Q[X ,Y1, . . . ,Ym]
such that

Z = {x ∈ Q | ∀y ∈ Qm : f (x , y) 6= 0}.

What is the value of m in this description? How low can it be
chosen?

Koenigsmann’s original description: m ≈ 500,

published in [Daa21] with m = 38,

improved by Sun and Zhang to m = 32 [ZS21],

in PhD thesis: m = 19.

m ≤ 1 is not possible.
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Generalisation to all global fields
The approach extends to general global fields (i.e. number fields or
function fields in one variable over a finite field). One needs to
replace concepts adequately:

P′ becomes the set of places of the field, P the set of finite
places (= V(K )),
in characteristic 2, a different presentation of quaternion
algebras is needed.

The following ingredients then extend with inessential changes:

Hilbert Reciprocity law
existential definability of the sets Jc(a, b)

basis for results by Park and Eisenträger-Morrison

Theorem 4.1

Let K be a global field. For any finite S ⊆ V(K), OS is universally definable in K .
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Generalisation to all global fields

Rings of S-integers of a global field K are precisely integrally
closed, finitely generated subrings of K with K as fraction field.

In fact, one can obtain the following (suggested by Dittmann):

Corollary 4.2

If R is a finitely generated domain with a global field K as fraction field, then R is
universally definable in K .
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Abstraction of the question

We used that Z =
⋂

p∈P Z(p), i.e. Z is the intersection of all discrete
valuations rings of Q.

Question 4.3

Given a field K , which intersections of valuation rings can we define
existentially/universally?

There are two key ingredients in our proof:

Existential definability of
⋂

v∈∆c (a,b) mv uniformly in a, b, c .

Good description of ramification sets, in particular a Reciprocity
Law
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Function fields in one variable over
other fields
(joint work with Philip Dittmann)
Let F be a function field in one variable over a field K (let’s say
char(K ) 6= 2 for now). Let V be the set of Z-valuations which are
trivial on K . Under which conditions can we still universally define
rings of S-integers?

If K is a finite field, then K has 2-cohomological dimension 1,
and a quaternion algebra (a, b)F can be seen as an element of
H2(F ,Z/2Z). If K is a field of 2-cohomological dimension n,
one should work with elements of Hn+1(F ,Z/2Z).
Hn+1(F ,Z/2Z) is generated by symbols (a1, . . . , an+1)F with
a1, . . . an+1 ∈ F×. We define ∆(a1, . . . , an+1) and
∆c(a1, . . . , an+1) analogously.
There should be an existential formula associating to
(a1, . . . , an+1, d) ∈ (F×)n+2 the subset

⋂
v∈∆d (a1,...,an+1) mv .
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rings of S-integers?

If K is a finite field, then K has 2-cohomological dimension 1,
and a quaternion algebra (a, b)F can be seen as an element of
H2(F ,Z/2Z). If K is a field of 2-cohomological dimension n,
one should work with elements of Hn+1(F ,Z/2Z).
Hn+1(F ,Z/2Z) is generated by symbols (a1, . . . , an+1)F with
a1, . . . an+1 ∈ F×. We define ∆(a1, . . . , an+1) and
∆c(a1, . . . , an+1) analogously.

There should be an existential formula associating to
(a1, . . . , an+1, d) ∈ (F×)n+2 the subset

⋂
v∈∆d (a1,...,an+1) mv .
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Function fields in one variable over
other fields

If F/K a function field in one variable and K is of 2-cohomological
dimension n, then the natural sequence

Hn+1(F ,Z/2Z)→
⊕
v∈V

Hn(Fv ,Z/2Z)→ Hn(K ,Z/2Z)→ 0

is exact. If additionally all elements of Hn+1(F ,Z/2Z) are symbols
(a1, . . . , an+1)F , then we obtain a sort of Reciprocity Law for these
symbols.
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Function fields in one variable over
other fields
Some examples where this works:

Theorem 4.4

Let K be a field with char(K) 6= 2 satisfying one of the following:

K is a global field,

K is a local field, i.e. a finite extension of Qp or Fp((T )) for some prime p,

K is a pseudo-algebraically closed, non-quadratically closed field.

Then for any function field in one variable F/K and any finite set S of Z-valuations on F
trivial on K , the ring of S-integers OS is universally definable.

Corollary 4.5

Let K be a field with char(K) 6= 2 satisfying one of the following:

K is a local field,

K is a pseudo-algebraically closed, non-quadratically closed field.

Let R be a domain which is finitely generated as a K -algebra and whose fraction field F
is a function field in one variable over K . Then R is universally definable in F .
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