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Existentially definable subsets

Let K be a field, D ⊆ Kn for some n ∈ N.
D is called existentially definable (in Kn) if D = ϕ(K ) for some
existential formula ϕ in n free variables in the first-order language of
rings with parameters from K .

Equivalently,

D = {x ∈ Kn | f1(x ,Y ), . . . , fr (x ,Y ) have a common zero in Km}

for some r ,m ∈ N, f1, . . . , fr ∈ K [X1, . . . ,Xn,Y1, . . . ,Ym].
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Existentially definable subsets
Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

The set of squares of the field K :

�K = {x ∈ K | ∃y ∈ K : x = y2}.

For K = Q, the set of non-negative rationals:

Q≥0 = {x ∈ Q | ∃y1, . . . , y4 ∈ Q : x = y2
1 + y2

2 + y2
3 + y2

4 }.

The set of sums of m squares of a field, i.e.

Sm(K ) =

{
x ∈ K

∣∣∣∣∣ ∃y1, . . . , ym ∈ K : x =
m∑
i=1

y2
i

}
.

3/22



Existentially definable subsets
Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

The set of squares of the field K :

�K = {x ∈ K | ∃y ∈ K : x = y2}.

For K = Q, the set of non-negative rationals:

Q≥0 = {x ∈ Q | ∃y1, . . . , y4 ∈ Q : x = y2
1 + y2

2 + y2
3 + y2

4 }.

The set of sums of m squares of a field, i.e.

Sm(K ) =

{
x ∈ K

∣∣∣∣∣ ∃y1, . . . , ym ∈ K : x =
m∑
i=1

y2
i

}
.

3/22



Existentially definable subsets
Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

The set of squares of the field K :

�K = {x ∈ K | ∃y ∈ K : x = y2}.

For K = Q, the set of non-negative rationals:

Q≥0 = {x ∈ Q | ∃y1, . . . , y4 ∈ Q : x = y2
1 + y2

2 + y2
3 + y2

4 }.

The set of sums of m squares of a field, i.e.

Sm(K ) =

{
x ∈ K

∣∣∣∣∣ ∃y1, . . . , ym ∈ K : x =
m∑
i=1

y2
i

}
.

3/22



Existentially definable subsets
Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

The set of squares of the field K :

�K = {x ∈ K | ∃y ∈ K : x = y2}.

For K = Q, the set of non-negative rationals:

Q≥0 = {x ∈ Q | ∃y1, . . . , y4 ∈ Q : x = y2
1 + y2

2 + y2
3 + y2

4 }.

The set of sums of m squares of a field, i.e.

Sm(K ) =

{
x ∈ K

∣∣∣∣∣ ∃y1, . . . , ym ∈ K : x =
m∑
i=1

y2
i

}
.

3/22



Existentially definable subsets

In general, to decide whether a given subset of a field K (or
more generally, a subset of Kn) is existentially definable, is hard.

If K has a “rich arithmetic” (e.g. number field), many subsets
could be existentially definable.

e.g. Question: Is Z an existentially definable subset of Q?
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How many quantifiers?

We can ask: if a subset D is existentially definable, what is the
“simplest” description which can be given to it?

We will measure complexity by number of quantifiers:

Definition

Let K be a field, n ∈ N, D ⊆ Kn. The existential rank of D (in Kn) is defined to be the
smallest natural number m such that D = ϕ(K) for some existential Lring(K)-formula ϕ
with m quantifiers. We denote it by rk∃

K (D). If D is not existentially definable, we set
rk∃

K (D) =∞.

(Lring is the language of rings, Lring(K) the language of rings with parameters from K)
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How many quantifiers?

For any field K , rk∃
K (Sm(K )) ≤ m.

Since for K = Q one has for all m ≥ 4 that
Sm(Q) = Q≥0 = S4(Q), we have rk∃

Q(Sm(Q)) ≤ 4 for all m.

In fact, one has

Q≥0 = S3(Q) ∪ 2S3(Q),

so even rk∃
Q(Q≥0) ≤ 3.

Question: Do we have rk∃
Q(Q≥0) = 3?

Question: Is there any subset D of Q with 2 < rk∃
Q(D) <∞?

If rk∃
Q(Z) <∞, then there exists N ∈ N such that rk∃

Q(D) ≤ N
for all existentially definable D ⊆ Q.

Determining rk∃
K (D) is in general hard.
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Existential rank of formulas

Consider for each m ∈ N the following formulas in the language of
rings:

σm(X ) = ∃Y1, . . . ,Ym(X
.

=
m∑
i=1

Y 2
i )

πm(X1, . . . ,Xm) = ∃Y1, . . . ,Ym(
m∧
i=1

Xi
.

= Y 2
i )

Can σm(X ) or πm(X1, . . . ,Xn) be written with fewer quantifiers
“independently of the underlying field”? I.e. can Sm(K ) and (�K )m

be defined uniformly in the class of fields with fewer than m
quantifiers?
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Existential rank of formulas
Definition

Let L be a first-order language, ϕ an L-formula, T an L-theory. The L-existential rank
of ϕ modulo T , denoted by rk∃

L,T (ϕ) is the smallest integer m such that T |= ϕ↔ ψ for

some existential L-formula ψ with m quantifiers. We set rk∃
L,T (ϕ) =∞ if no such

integer m exists.

Remarks:

We recover from this the existential rank of a subset D = ϕ(K )
of some field K , namely rk∃

K (D) = rk∃
Lring(K),ThLring(K)(K)(ϕ).

For L-formulas ϕ1, ϕ2 and an L-theory T one has

rk∃
L,T (ϕ1 ∧ ϕ2) ≤ rk∃

L,T (ϕ1) + rk∃
L,T (ϕ2)

rk∃
L,T (ϕ1 ∨ ϕ2) ≤ max{rk∃

L,T (ϕ1), rk∃
L,T (ϕ2)}
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Existential rank of formulas

In the language of rings Lring and with

σm(X ) = ∃Y1, . . . ,Ym(X
.

=
m∑
i=1

Y 2
i )

πm(X1, . . . ,Xm) = ∃Y1, . . . ,Ym(
m∧
i=1

Xi
.

= Y 2
i )

rk∃
Lring,T

if T = theory of
fields

if T = theory of
fields with 2 6= 0

σm(X )

m m

πm(X1, . . . ,Xm)

m 1
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Outline

1. Introduction X

2. Understanding existential rank of formulae: a model-theoretic
framework

3. Lower bounds for existentially definable subsets of a field,
uniform upper bounds for existentially definable subsets of a field
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A condition to obtain lower bounds
Proposition

Let T be the theory of fields, m ≥ 1. Consider for an existential Lring-formula
ϕ(X1, . . . ,Xn) the following condition:

There exists an extension of fields L/K and a ∈ Kn such that L |= ϕ(a), but
K ′ 6|= ϕ(a) for every subextension K ′ of L/K generated by m − 1 elements.

(*)

Then rk∃
Lring,T

(ϕ) ≥ m.

Proof: Suppose that ψ(X1, . . . ,Xn) is an existential Lring-formula
with m − 1 quantifiers equivalent to ϕ in all intermediate extensions
of L/K . We have that L |= ϕ(a) and hence L |= ψ(a).

There exists an intermediate extension K ′ of L/K generated by m− 1
elements and such that K ′ |= ψ(a). But then K ′ |= ϕ(a).

Note: the above argument even shows rk∃
Lring,T ′(ϕ) ≥ m where T ′ is

the union of T with the universal Lring-theory of L.

11/22



A condition to obtain lower bounds
Proposition

Let T be the theory of fields, m ≥ 1. Consider for an existential Lring-formula
ϕ(X1, . . . ,Xn) the following condition:

There exists an extension of fields L/K and a ∈ Kn such that L |= ϕ(a), but
K ′ 6|= ϕ(a) for every subextension K ′ of L/K generated by m − 1 elements.

(*)

Then rk∃
Lring,T

(ϕ) ≥ m.

Proof: Suppose that ψ(X1, . . . ,Xn) is an existential Lring-formula
with m − 1 quantifiers equivalent to ϕ in all intermediate extensions
of L/K . We have that L |= ϕ(a) and hence L |= ψ(a).

There exists an intermediate extension K ′ of L/K generated by m− 1
elements and such that K ′ |= ψ(a). But then K ′ |= ϕ(a).

Note: the above argument even shows rk∃
Lring,T ′(ϕ) ≥ m where T ′ is

the union of T with the universal Lring-theory of L.

11/22



A condition to obtain lower bounds
Proposition

Let T be the theory of fields, m ≥ 1. Consider for an existential Lring-formula
ϕ(X1, . . . ,Xn) the following condition:

There exists an extension of fields L/K and a ∈ Kn such that L |= ϕ(a), but
K ′ 6|= ϕ(a) for every subextension K ′ of L/K generated by m − 1 elements.

(*)

Then rk∃
Lring,T

(ϕ) ≥ m.

Proof: Suppose that ψ(X1, . . . ,Xn) is an existential Lring-formula
with m − 1 quantifiers equivalent to ϕ in all intermediate extensions
of L/K . We have that L |= ϕ(a) and hence L |= ψ(a).

There exists an intermediate extension K ′ of L/K generated by m− 1
elements and such that K ′ |= ψ(a). But then K ′ |= ϕ(a).

Note: the above argument even shows rk∃
Lring,T ′(ϕ) ≥ m where T ′ is

the union of T with the universal Lring-theory of L.

11/22



A condition to obtain lower bounds
Proposition

Let T be the theory of fields, m ≥ 1. Consider for an existential Lring-formula
ϕ(X1, . . . ,Xn) the following condition:

There exists an extension of fields L/K and a ∈ Kn such that L |= ϕ(a), but
K ′ 6|= ϕ(a) for every subextension K ′ of L/K generated by m − 1 elements.

(*)

Then rk∃
Lring,T

(ϕ) ≥ m.

Proof: Suppose that ψ(X1, . . . ,Xn) is an existential Lring-formula
with m − 1 quantifiers equivalent to ϕ in all intermediate extensions
of L/K . We have that L |= ϕ(a) and hence L |= ψ(a).

There exists an intermediate extension K ′ of L/K generated by m− 1
elements and such that K ′ |= ψ(a). But then K ′ |= ϕ(a).

Note: the above argument even shows rk∃
Lring,T ′(ϕ) ≥ m where T ′ is

the union of T with the universal Lring-theory of L.

11/22



Sums of m squares
Consider the formula

σm(X ) = ∃Y1, . . . ,Ym(X
.

=
m∑
i=1

Y 2
i ).

We show that rk∃
Lring,T

(σm) = m, where T is the theory of fields of
characteristic 0.

Consider K = R(T ), L = K (U1, . . . ,Um−1)(
√

T −
∑m−1

i=1 U2
i );

set Um =
√
T −

∑m−1
i=1 U2

i ∈ L. We have L |= σm(T ), since

T =
∑m

i=1 U
2
i .

Any subfield K ′ of L/K generated by m − 1 elements and for
which K ′ |= σm(T ) must have transcendence degree at most
m − 2 over K .
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Sums of m squares

But by results on the essential dimension of quadrics (Karpenko,
Merkurjev [KM03]), T is not a sum of m squares in any
intermediate field of L/K of transcendence degree less than
m − 1 over K .

We conclude that rk∃
Lring,T

(σm) ≥ m by (*).

We conclude that rk∃
Lring,T

(σm) = m where T is the theory of fields
of characteristic 0.

Note: we did not show that there exists an intermediate field K ′ of
L/K (or in fact any field) with rk∃

K ′(Sm(K ′)) = m.
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Note: we did not show that there exists an intermediate field K ′ of
L/K (or in fact any field) with rk∃

K ′(Sm(K ′)) = m.
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Tuples of m squares
For m ∈ N we had

πm(X1, . . . ,Xm) = ∃Y1, . . . ,Ym(
m∧
i=1

Xi
.

= Y 2
i ).

We argue similarly as before. Let K = F2(T1, . . . ,Tm) and
L = F2(

√
T1, . . . ,

√
Tm).

We have K |= πm(T1, . . . ,Tm), but K ′ 6|= πm(T1, . . . ,Tm) for
any intermediate field K ′ of L/K generated by m − 1 elements
over K . Hence, there is no existential formula with m − 1
quantifiers which is equivalent to πm for all intermediate
extensions of L/K .

Note: we did not show that there exists an intermediate
extension K ′ of L/K (or in fact any field) for which
rk∃

K ′(πm(K ′)) = m.
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Tuples of m squares

If K is a field with 2 6= 0 and a1, . . . , am ∈ K , then the extension
K (
√
a1, . . . ,

√
an)/K is a separable finite extension and thus

generated by one element. (Primitive Element Theorem) Thus,
if T is the theory of fields in which 2 6= 0, no obstruction as in
(*) exists.

Does this already imply that rk∃
Lring,T

(πm) = 1?
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Quantitative preservation theorem
Yes.

Theorem (“Quantitative preservation theorem”)

Let L be a first-order language, ϕ an L-formula, T an L-theory, m ∈ N. The following
are equivalent:

(i) rk∃
L,T (ϕ) ≤ m.

(ii) For every L |= T and every x ∈ ϕ(L) there is an L-substructure K of L generated
by x and m further elements such that M |= ϕ(ρ(x)) for every L-embedding
ρ : K → M where M |= T .

An example of a specialisation hereof:

Corollary

Let T be the union of the Lring-theory of fields and some universal Lring-theory. Let ϕ be
an existential Lring-formula and m ∈ N. The following are equivalent:

(i) rk∃
Lring,T

(ϕ) ≤ m.

(ii) For every L |= T and every x ∈ ϕ(L), there exists a subfield K generated by x and
m further elements of L such that K |= ϕ(x).
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Another application

Corollary

Let T be the theory of fields of characteristic 0. For L-formulas ϕ1, ϕ2 with
rk∃

Lring,T
(ϕ1), rk∃

Lring,T
(ϕ2) ≥ 1 one has

rk∃
Lring,T

(ϕ1 ∧ ϕ2) ≤ rk∃
Lring,T

(ϕ1) + rk∃
Lring,T

(ϕ2)− 1.

Proof idea.

If L1/K and L2/K are field extensions in characteristic 0 which are not purely
transcendental and which are generated by m1 respectively m2 elements, then any
compositum L1L2 is generated by m1 + m2 − 1 elements over K . Now invoke the previous
corollary.
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Explicit techniques

An example of an existential formula with one quantifier equivalent
to π2 for fields in which 2 6= 0 is given by

∃Y ((X1 − X2)2Y 4 − 2(X1 + X2)Y 2 + 1
.

= 0 ∨ (X1
.

= 0 ∧ X2
.

= 0)).

Explicit techniques to construct existential formulas equivalent to a
given formula and with the optimal number of quantifiers, will be
discussed in upcoming work with Karim Becher.
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Outline

1. Introduction X

2. Understanding existential rank of formulae: a model-theoretic
framework X

3. Lower bounds for existentially definable subsets of a field,
uniform upper bounds for existentially definable subsets of a field
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Sums and tuples of squares in a single
field

Let m ≥ 1.

Through a limit construction, one can show that there exists a
field K where rk∃

K (Sm(K )) = m for each m ∈ N.

If K is of characteristic 2, imperfect and large1

(e.g. K = F2((T ))), then rk∃
K (πm(K )) = m.

If K is a finitely generated extension of a perfect field K0, then
rk∃

K (πm(K )) = 1.

In particular, although there is no existential formula with m − 1
quantifiers equivalent to πm simultaneously for all intermediate
fields of F2(

√
T1, . . . ,

√
Tm)/F2(T1, . . . ,Tm), such a formula

does exist for each intermediate field individually!

1A field K is called large if K((T ))/K is an existentially closed extension.
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Existential rank of a field
For a field K , we define

rk∃,1(K ) = sup{rk∃
K (D) | D ⊆ K existentially definable in K}.

If K is finite or algebraically closed, then rk∃,1(K ) = 0.
If K = R, K = Qp for some prime number p, or K is perfect
pseudo-algebraically closed (e.g. an infinite algebraic extension of
a finite field), then rk∃,1(K ) ≤ 1.
If K is large and imperfect (e.g. K = Fp((T ))) then
rk∃,1(K ) =∞.
(Pasten [Pas22], building on Kollár [Kol08]) If K is large and
uncountable (e.g. K = C), then rk∃,1(K (T )) =∞.
If K is an infinite, finitely generated field, then rk∃,1(K ) ≥ 2. If
rk∃,1(Q) <∞, then Z is not existentially definable in Q.
Question: Is there a field K with rk∃,1(K ) 6∈ {0, 1,∞}?
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Tuples of pth powers in characteristic p

Existential vs positive-existential

Large fields
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Tuples of pth powers in characteristic p

Let K be a field which is finitely generated over a perfect field K0 of
characteristic p > 0. There exists r ∈ N \ pN (depending on K ) such
that for all x , y ∈ K we have that

∃z1, z2 ∈ K : x = zp1 ∧ x = zp2

if and only if there exists z ∈ K such that

(x r + 1 = 0 ∧ y = zp) ∨ (x r + 1 6= 0

∧ (x r + 1)p+1y + (x r + 1)p+1yp
2

+ (x r + 1)2p+1 + x r + 1 = zp)

If K is imperfect, then r cannot be bounded uniformly for all finite
separable extensions of K .
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Existential vs positive-existential

For a language L, an L-theory T and an L-formula ϕ, we define its
existential rank

rk∃
L,T (ϕ) = inf

{
m ∈ N

∣∣∣∣ ϕ is equivalent modulo T to an
existential L-formula with m quantifiers

}
and its positive-existential rank

rk∃+

L,T (ϕ) = inf

{
m ∈ N

∣∣∣∣ ϕ is equivalent modulo T to a positive
existential L-formula with m quantifiers

}
.

Clearly one always has rk∃
L,T (ϕ) ≤ rk∃+

L,T (ϕ).
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Existential vs positive-existential

Let L = Lring, T a theory containing the theory of fields, ϕ an
Lring-formula. Then precisely one of the following occurs:

1. rk∃
Lring,T

(ϕ) = rk∃+

Lring,T
(ϕ),

2. rk∃
Lring,T

(ϕ) = 0 and rk∃+

Lring,T
(ϕ) = 1,

3. rk∃
Lring,T

(ϕ) = 1 and rk∃+

Lring,T
(ϕ) = 2.

Furthermore, case (3) only occurs in very special cases; e.g. it
requires that T has both finite and infinite models.

Examples with T the theory of fields:

The formula x 6= 0 is an example of case (2).

The formula ∃y(y2 6= y) is an example of case (3).
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Large fields

A field K is called large if K is existentially closed in the field of
formal Laurent series K ((T )).

Equivalently, a field K is large if every smooth curve over K has
either zero or infinitely many K -rational points.

Examples of large fields: henselian valued fields (e.g. Qp,
K ((T ))), real closed fields (e.g. R), pseudo-algebraically closed
fields (e.g. non-principal ultraproducts of finite fields, separably
closed fields)
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