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Existentially definable subsets

Let K be a field, D C K" for some n € N.

D is called existentially definable (in K") if D = ¢(K) for some
existential formula ¢ in n free variables in the first-order language of
rings with parameters from K.
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Let K be a field, D C K" for some n € N.

D is called existentially definable (in K") if D = ¢(K) for some
existential formula ¢ in n free variables in the first-order language of
rings with parameters from K.

Equivalently,
D={xeK"|fi(x,Y),...,f(x,Y) have a common zero in K™}

forsomer,meN, fi,....f, € K[X1,...,Xn, Y1,..., Ynl.
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Existentially definable subsets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets (quantifier-freely definable).
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Existentially definable subsets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets (quantifier-freely definable).
m The set of squares of the field K:

OK ={xe€K|3yecK:x=y}
m For K = Q, the set of non-negative rationals:

Qoo={x€Q|31,....ya €Q:x=y2+y2 +y2+y2}.
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Existentially definable subsets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets (quantifier-freely definable).
m The set of squares of the field K:

OK ={xe€K|3yecK:x=y}
m For K = Q, the set of non-negative rationals:
Quo={x€Q|I,....ym €Q:x =y} +y3 +y; +yi}.
m The set of sums of m squares of a field, i.e.

m
Elyl,...,ymGK:X:Zy,~2}.

i=1

Sm(K) = {XG K
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Existentially definable subsets

m In general, to decide whether a given subset of a field K (or
more generally, a subset of K”) is existentially definable, is hard.
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Existentially definable subsets

m In general, to decide whether a given subset of a field K (or
more generally, a subset of K”) is existentially definable, is hard.

m If K has a “rich arithmetic” (e.g. number field), many subsets
could be existentially definable.

m e.g. Question: Is Z an existentially definable subset of Q7
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How many quantifiers?

We can ask: if a subset D is existentially definable, what is the
“simplest” description which can be given to it?
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How many quantifiers?

We can ask: if a subset D is existentially definable, what is the
“simplest” description which can be given to it?
We will measure complexity by number of quantifiers:

Definition

Let K be a field, n € N, D C K". The existential rank of D (in K") is defined to be the
smallest natural number m such that D = ¢(K) for some existential Lying(K)-formula ¢
with m quantifiers. We denote it by ki (D). If D is not existentially definable, we set
k3 (D) = oo.

(‘Cring is the language of rings, [/ring(K) the language of rings with parameters from K)
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How many quantifiers?

m For any field K, rki (Sm(K)) < m.
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How many quantifiers?

m For any field K, rki (Sm(K)) < m.

m Since for K = Q one has for all m > 4 that
Sm(Q) = Q>0 = S4(Q), we have rky(Sm(Q)) < 4 for all m.
m In fact, one has

Q>0 = S3(Q) U25(Q),

so even rkg(Q>0) < 3.
m Question: Do we have rkg(Qx>0) = 37
m Question: Is there any subset D of Q with 2 < rk§(D) < oo?

m If 1k (Z) < 0o, then there exists N € N such that rkg(D) < N
for all existentially definable D C Q.

m Determining rky (D) is in general hard.
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Existential rank of formulas

Consider for each m € N the following formulas in the language of
rings:

om(X) =31, Ym(X =D YD)
i=1
Tm(Xey o Xm) = 3Ya, . Yoo\ X = Y7)

Can o,(X) or mm(Xy,. .., X,) be written with fewer quantifiers
“independently of the underlying field”? l.e. can 5,(K) and (OK)™
be defined uniformly in the class of fields with fewer than m
quantifiers?

(U

7/22




Existential rank of formulas
Definition
Let £ be a first-order language, ¢ an L-formula, T an L-theory. The L-existential rank

of ¢ modulo T, denoted by rkZT(ap) is the smallest integer m such that T |= ¢ <> 4 for

some existential £-formula ¢ with m quantifiers. We set rk%yT(cp) = oo if no such
integer m exists.

Remarks:
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Existential rank of formulas
Definition
Let £ be a first-order language, ¢ an L-formula, T an L-theory. The L-existential rank

of ¢ modulo T, denoted by rki’T(ap) is the smallest integer m such that T |= ¢ <> 4 for

some existential £-formula ¢ with m quantifiers. We set rk%‘T(cp) = oo if no such
integer m exists.

Remarks:

m We recover from this the existential rank of a subset D = ¢(K)
of some field K, namely rky (D) = rkaﬂring(K),Thgring(K)(K)("D)'

m For L-formulas o1, > and an L-theory T one has

tkz (01 A 2) S TRZ (1) + 1kZ 7(02)
rkz (o1 V @2) < max{rkz 7(¢1),rkz 7(2)}

|- i
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Existential rank of formulas

In the language of rings Lii,g and with
om(X)=3Y1,. . Ym(X =DV

T(Xts o Xm) = 3V1, ., Yoo\ X = YP)
i=1

tkz, T if T :f tll;eory of
ields
om(X)
7rm(X17 . 7Xm)
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Existential rank of formulas

In the language of rings Lii,g and with
om(X)=3Y1,. . Ym(X =DV

T(Xts o Xm) = 3V1, ., Yoo\ X = YP)
i=1

rkaﬁring,T if T = theory of if T = theory of
fields fields with 2 £ 0
om(X) m m
ﬂm(Xl,...,Xm) m 1
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QOutline

1. Introduction v

2. Understanding existential rank of formulae: a model-theoretic
framework

3. Lower bounds for existentially definable subsets of a field,
uniform upper bounds for existentially definable subsets of a field
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A condition to obtain lower bounds
Proposition

Let T be the theory of fields, m > 1. Consider for an existential Lyng-formula
@(X1,...,Xn) the following condition:

There exists an extension of fields L/K and a € K" such that L |= ¢(a), but
K’ [~ ¢(a) for every subextension K' of L/K generated by m — 1 elements.

Then rk%ring’-,—(cp) > m.

™)
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A condition to obtain lower bounds
Proposition
Let T be the theory of fields, m > 1. Consider for an existential Lyng-formula

@(X1,...,Xn) the following condition:

There exists an extension of fields L/K and a € K" such that L |= ¢(a), but
K’ [~ ¢(a) for every subextension K' of L/K generated by m — 1 elements.

™)

Then rk%ring’-r(ap) > m.

Proof: Suppose that 9)(Xi, ..., X,) is an existential L,g-formula
with m — 1 quantifiers equivalent to ¢ in all intermediate extensions
of L/K. We have that L = ¢(a) and hence L = 9(a).
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with m — 1 quantifiers equivalent to ¢ in all intermediate extensions
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A condition to obtain lower bounds

Proposition

Let T be the theory of fields, m > 1. Consider for an existential Lyng-formula
@(X1,...,Xn) the following condition:

There exists an extension of fields L/K and a € K" such that L |= ¢(a), but *)
K’ [~ ¢(a) for every subextension K' of L/K generated by m — 1 elements.

Then rk%ring’-r(ap) > m.

Proof: Suppose that 9)(Xi, ..., X,) is an existential L,g-formula
with m — 1 quantifiers equivalent to ¢ in all intermediate extensions
of L/K. We have that L = ¢(a) and hence L = 9(a).

There exists an intermediate extension K’ of L/K generated by m —1
elements and such that K’ = v(a). But then K’ = p(a). O

Note: the above argument even shows rkz /() = m where T' is
the union of T with the universal Ly,g-theory of L.
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Sums of m squares

Consider the formula
om(X) =3Y1,.. V(X =) YP).
i=1

We show that rkzing,T(Um) = m, where T is the theory of fields of
characteristic 0.
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Sums of m squares

Consider the formula
om(X) =3Y1,.. V(X =) YP).

We show that rkzing’T(am) = m, where T is the theory of fields of
characteristic 0.

m Consider K =R(T), L= K(U1,...,Un-1)(y/ T — S U?);
set Up = /T — 71 U? € L. We have L |= 0,,(T), since

T:Z:'LU,?-
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Sums of m squares

Consider the formula
om(X) =3Y1,.. V(X =) YP).

We show that rkzing’T(am) = m, where T is the theory of fields of
characteristic 0.

m Consider K =R(T), L= K(U1,...,Un-1)(y/ T — S U?);
set Up = /T — 71 U? € L. We have L |= 0,,(T), since

T=3" Ui2'
m Any subfield K’ of L/K generated by m — 1 elements and for
which K’ = 0,(T) must have transcendence degree at most

m — 2 over K.
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Sums of m squares

m But by results on the essential dimension of quadrics (Karpenko,
Merkurjev [KMO03]), T is not a sum of m squares in any
intermediate field of L/K of transcendence degree less than
m —1 over K.
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Sums of m squares

m But by results on the essential dimension of quadrics (Karpenko,
Merkurjev [KMO03]), T is not a sum of m squares in any

intermediate field of L/K of transcendence degree less than
m —1 over K.

m We conclude that rkir;ng,T(("m) > m by (¥).

We conclude that rkzing,T(J'ﬂ) = m where T is the theory of fields
of characteristic 0.

Note: we did not show that there exists an intermediate field K’ of
L/K (or in fact any field) with rky, (Sm(K’)) = m.
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Tuples of m squares
For m € N we had

Tm(X1, s Xm) =3V, Y\ Xi = V7).
i=1
We argue similarly as before. Let K = Fy(T1,..., Tm) and
L=Fo(v/T1,.. s,V Thm).
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Tm(X1, s Xm) =3V, Y\ Xi = V7).
i=1

We argue similarly as before. Let K = Fy(T1,..., Tm) and
L=Fo(v/T1,.. s,V Thm).

m We have K = mp(T1,..., Tpm), but K" e (T, ..., Ty) for
any intermediate field K’ of L/K generated by m — 1 elements
over K. Hence, there is no existential formula with m — 1
quantifiers which is equivalent to m,, for all intermediate
extensions of L/K.

m Note: we did not show that there exists an intermediate
extension K’ of L/K (or in fact any field) for which
ki (mm(K')) = m.
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Tuples of m squares

m If K is a field with 2 # 0 and a1,...,am € K, then the extension
K(y/at,.-.,+/an)/K is a separable finite extension and thus
generated by one element. (Primitive Element Theorem) Thus,
if T is the theory of fields in which 2 # 0, no obstruction as in
(*) exists.

15/22



Tuples of m squares

m If K is a field with 2 # 0 and a1,...,am € K, then the extension
K(y/at,.-.,+/an)/K is a separable finite extension and thus
generated by one element. (Primitive Element Theorem) Thus,
if T is the theory of fields in which 2 # 0, no obstruction as in
(*) exists.

m Does this already imply that rkf:ringj(ﬁm) =17
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Quantitative preservation theorem
Yes.

Theorem (“Quantitative preservation theorem™)

Let L be a first-order language, ¢ an L-formula, T an L-theory, m € N. The following
are equivalent:

(i) 11 7(9) < m.

(if) For every L |=T and every x € ¢(L) there is an L-substructure K of L generated
by x and m further elements such that M |= ¢(p(x)) for every L-embedding
p:K— M where M =T.
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Quantitative preservation theorem
Yes.

Theorem (“Quantitative preservation theorem™)

Let L be a first-order language, ¢ an L-formula, T an L-theory, m € N. The following
are equivalent:

(i) 12 (p) < m.

(if) For every L |=T and every x € ¢(L) there is an L-substructure K of L generated
by x and m further elements such that M |= ¢(p(x)) for every L-embedding
p:K— M where M =T.

An example of a specialisation hereof:

Corollary

Let T be the union of the Lng-theory of fields and some universal L ng-theory. Let ¢ be
an existential Lng-formula and m € N. The following are equivalent:

(i) rkz, r(p) <m.

ring»
(if) For every L |= T and every x € p(L), there exists a subfield K generated by x and
m further elements of L such that K = ¢p(x).
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Another application

Corollary

Let T be the theory of fields of characteristic 0. For L-formulas 1,2 with

rkzingy-,-(cpl),rk?:ring’-r(goz) > 1 one has

rkiring,T(S@l Ap2) < rk%,ing,r(wl) + rk%,ing,T(W) =1

Proof idea.

If L1/K and Ly/K are field extensions in characteristic 0 which are not purely
transcendental and which are generated by mj respectively my elements, then any
compositum LjL, is generated by m; 4+ my — 1 elements over K. Now invoke the previous
corollary. O

v
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Explicit techniques

An example of an existential formula with one quantifier equivalent
to 7 for fields in which 2 # 0 is given by

FY (X1 — X)2Y* = 2(X1 + Xo) Y2+ 1=0V (Xy =0A X =0)).

Explicit techniques to construct existential formulas equivalent to a
given formula and with the optimal number of quantifiers, will be
discussed in upcoming work with Karim Becher.
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Sums and tuples of squares in a single
field

Let m > 1.

m Through a limit construction, one can show that there exists a
field K where rkj(Sm(K)) = m for each m € N.

A field K is called /arge if K((T))/K is an existentially closed extension.

of.
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Sums and tuples of squares in a single
field

Let m > 1.

m Through a limit construction, one can show that there exists a
field K where rkj(Sm(K)) = m for each m € N.

m If K is of characteristic 2, imperfect and large!
(e.g. K =T(T)), then rky(mm(K)) = m.

A field K is called /arge if K((T))/K is an existentially closed extension.
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Sums and tuples of squares in a single
field

Let m > 1.

m Through a limit construction, one can show that there exists a
field K where rkj(Sm(K)) = m for each m € N.

m If K is of characteristic 2, imperfect and large!
(e.g. K =T(T)), then rky(mm(K)) = m.

m If K is a finitely generated extension of a perfect field Kp, then
rkj (mm(K)) = 1.
In particular, although there is no existential formula with m — 1
quantifiers equivalent to 7, simultaneously for all intermediate

fields of Fo(v/T1, ...y v/ Tm)/Fa(T1, ..., Tm), such a formula
does exist for each intermediate field individually!

A field K is called /arge if K((T))/K is an existentially closed extension.

3
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Existential rank of a field
For a field K, we define
rk?(K) = sup{rkk (D) | D C K existentially definable in K}.
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m If K =R, K= Q, for some prime number p, or K is perfect
pseudo-algebraically closed (e.g. an infinite algebraic extension of
a finite field), then rk*'(K) < 1.

m If K is large and imperfect (e.g. K =F,((T))) then
k™ (K) = oc.

m (Pasten [Pas22], building on Kollar [Kol08]) If K is large and
uncountable (e.g. K = C), then rk™'(K(T)) = cc.

m If K is an infinite, finitely generated field, then rk™'(K) > 2. If
rk™(Q) < oo, then Z is not existentially definable in Q.
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Existential rank of a field
For a field K, we define

(U

rk?(K) = sup{rkk (D) | D C K existentially definable in K}.

If K is finite or algebraically closed, then rk™'(K) = 0.

If K=R, K = Q) for some prime number p, or K is perfect
pseudo-algebraically closed (e.g. an infinite algebraic extension of
a finite field), then rk*'(K) < 1.

If K is large and imperfect (e.g. K =TF,((T))) then

k™ (K) = oc.

(Pasten [Pas22], building on Kollar [Kol08]) If K is large and
uncountable (e.g. K = C), then rk™'(K(T)) = cc.

If K is an infinite, finitely generated field, then rk™'(K) > 2. If
rk™(Q) < oo, then Z is not existentially definable in Q.
Question: Is there a field K with rk™'(K) ¢ {0,1,00}?
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m Tuples of pth powers in characteristic p
m Existential vs positive-existential

m Large fields
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Tuples of pth powers in characteristic p

Let K be a field which is finitely generated over a perfect field Ky of
characteristic p > 0. There exists r € N\ pN (depending on K such
that for all x,y € K we have that

dz1, 2 € K:X:zf/\x:zéJ
if and only if there exists z € K such that

(xX"+1=0Ay=2P)v(x"+1#0
A+ 1Py 4 (x4 )PP 4 (xF + 1) 4 X7 1= 2P)

If K is imperfect, then r cannot be bounded uniformly for all finite
separable extensions of K.

(G
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Existential vs positive-existential

For a language £, an L-theory T and an L-formula ¢, we define its
existential rank

¢ is equivalent modulo T to an }

] = inf : ) . -
rkﬁ’T(gp) n {m €N ‘ existential L-formula with m quantifiers

and its positive-existential rank

@ is equivalent modulo T to a positive }

k. =inf . . : -
: £’T(S0) n {m en ‘ existential L-formula with m quantifiers

Clearly one always has rk7 (@) < rkz ().
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Existential vs positive-existential

Let £ = Liing, T a theory containing the theory of fields, ¢ an
Lying-formula. Then precisely one of the following occurs:

1. I.ki:ringa-r(go) = rkz;ng,T(‘P)'
ringvT(gp) = 0 and rki‘:ingvT(S@) - ]"
3' I‘kaﬁringy-r(ga) = 1 and I'kit T((IO) = 2

ing>»

2. rky

Furthermore, case (3) only occurs in very special cases; e.g. it
requires that T has both finite and infinite models.
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Existential vs positive-existential

Let £ = Liing, T a theory containing the theory of fields, ¢ an
Lying-formula. Then precisely one of the following occurs:

1' rkiring’-r(@) = rkz;ng,T(‘P)'
ring,T(‘P) = 0 and rkzng,T(SO) =1
3. 1kz, 7(p) =1and tkj  +(p)=2.

ing>»

2. rky

Furthermore, case (3) only occurs in very special cases; e.g. it
requires that T has both finite and infinite models.
Examples with T the theory of fields:

m The formula x # 0 is an example of case (2).

m The formula Jy(y? # y) is an example of case (3).

5
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Large fields

m A field K is called large if K is existentially closed in the field of
formal Laurent series K((T)).

m Equivalently, a field K is large if every smooth curve over K has
either zero or infinitely many K-rational points.

m Examples of large fields: henselian valued fields (e.g. Qp,

K((T))), real closed fields (e.g. R), pseudo-algebraically closed

fields (e.g. non-principal ultraproducts of finite fields, separably
closed fields)
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