

How many quantifiers are needed to existentially define a given subset of a field?

Based on joint work with Arno Fehm & Philip Dittmann

Nicolas Daans

18 July 2022

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$. D is called *existentially definable (in* K^n) if $D = \varphi(K)$ for some existential formula φ in n free variables in the first-order language of rings with parameters from K.

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$. D is called *existentially definable (in* K^n) if $D = \varphi(K)$ for some existential formula φ in n free variables in the first-order language of rings with parameters from K.

Equivalently,

 $D = \{ \underline{x} \in K^n \mid f_1(\underline{x}, \underline{Y}), \dots, f_r(\underline{x}, \underline{Y}) \text{ have a common zero in } K^m \}$

for some $r, m \in \mathbb{N}$, $f_1, \ldots, f_r \in K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$.

Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field K:

$$\Box K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field *K*:

$$\Box K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

• For $K = \mathbb{Q}$, the set of non-negative rationals:

 $\mathbb{Q}_{\geq 0} = \{ x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \}.$

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field *K*:

$$\Box K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

• For $K = \mathbb{Q}$, the set of non-negative rationals:

$$\mathbb{Q}_{\geq 0} = \{x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2\}.$$

• The set of sums of *m* squares of a field, i.e.

$$S_m(K) = \left\{ x \in K \mid \exists y_1, \dots, y_m \in K : x = \sum_{i=1}^m y_i^2 \right\}.$$

In general, to decide whether a given subset of a field K (or more generally, a subset of Kⁿ) is existentially definable, is hard.

- In general, to decide whether a given subset of a field K (or more generally, a subset of Kⁿ) is existentially definable, is hard.
- If *K* has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.

- In general, to decide whether a given subset of a field K (or more generally, a subset of Kⁿ) is existentially definable, is hard.
- If K has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.
- e.g. Question: Is \mathbb{Z} an existentially definable subset of \mathbb{Q} ?

We can ask: if a subset D is existentially definable, what is the "simplest" description which can be given to it?

We can ask: if a subset D is existentially definable, what is the "simplest" description which can be given to it? We will measure complexity by number of quantifiers:

Definition

Let K be a field, $n \in \mathbb{N}$, $D \subseteq K^n$. The existential rank of D (in K^n) is defined to be the smallest natural number m such that $D = \varphi(K)$ for some existential $\mathcal{L}_{ring}(K)$ -formula φ with m quantifiers. We denote it by $rk_K^{\exists}(D)$. If D is not existentially definable, we set $rk_K^{\exists}(D) = \infty$.

 $(\mathcal{L}_{ring} \text{ is the language of rings, } \mathcal{L}_{ring}(K) \text{ the language of rings with parameters from } K)$

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

• Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that

 $S_m(\mathbb{Q}) = \mathbb{Q}_{\geq 0} = S_4(\mathbb{Q})$, we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \leq 4$ for all m.

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

 $\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$.

• Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

- Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?
- Question: Is there any subset D of \mathbb{Q} with $2 < \operatorname{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}_{\mathbb{Q}}^\exists (S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

- Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?
- **Question**: Is there any subset D of \mathbb{Q} with $2 < \operatorname{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?
- If rk[∃]_Q(Z) < ∞, then there exists N ∈ N such that rk[∃]_Q(D) ≤ N for all existentially definable D ⊆ Q.

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}_{\mathbb{Q}}^\exists (S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

- Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?
- **Question**: Is there any subset D of \mathbb{Q} with $2 < \operatorname{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?
- If rk[∃]_Q(Z) < ∞, then there exists N ∈ N such that rk[∃]_Q(D) ≤ N for all existentially definable D ⊆ Q.
- Determining $\operatorname{rk}_{K}^{\exists}(D)$ is in general hard.

Consider for each $m \in \mathbb{N}$ the following formulas in the language of rings:

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$
$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

Can $\sigma_m(X)$ or $\pi_m(X_1, \ldots, X_n)$ be written with fewer quantifiers "independently of the underlying field"? I.e. can $S_m(K)$ and $(\Box K)^m$ be defined *uniformly in the class of fields* with fewer than m quantifiers?

Definition

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory. The \mathcal{L} -existential rank of φ modulo T, denoted by $\operatorname{rk}_{\mathcal{L},T}^{\pm}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential \mathcal{L} -formula ψ with m quantifiers. We set $\operatorname{rk}_{\mathcal{L},T}^{\pm}(\varphi) = \infty$ if no such integer m exists.

Remarks:

Definition

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory. The \mathcal{L} -existential rank of φ modulo T, denoted by $\operatorname{rk}_{\mathcal{L}, T}^{\Xi}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential \mathcal{L} -formula ψ with m quantifiers. We set $\operatorname{rk}_{\mathcal{L}, T}^{\Xi}(\varphi) = \infty$ if no such integer m exists.

Remarks:

We recover from this the existential rank of a subset D = φ(K) of some field K, namely rk[∃]_K(D) = rk[∃]_{Lring(K),Th_{Lring(K)}(κ)(φ).}

Definition

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory. The \mathcal{L} -existential rank of φ modulo T, denoted by $\operatorname{rk}_{\mathcal{L}, T}^{\Xi}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential \mathcal{L} -formula ψ with m quantifiers. We set $\operatorname{rk}_{\mathcal{L}, T}^{\Xi}(\varphi) = \infty$ if no such integer m exists.

Remarks:

- We recover from this the existential rank of a subset D = φ(K) of some field K, namely rk[∃]_K(D) = rk[∃]_{Lring(K),Th_{Lring(K)}(κ)(φ).}
- For \mathcal{L} -formulas φ_1, φ_2 and an \mathcal{L} -theory \mathcal{T} one has

$$\begin{split} \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1} \wedge \varphi_{2}) &\leq \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}) + \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{2}) \\ \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1} \vee \varphi_{2}) &\leq \max\{\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}),\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{2})\} \end{split}$$

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$
$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$$\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}$$
if $\mathcal{T} = \text{theory of fields}$ $\sigma_m(X)$ m $\pi_m(X_1,\ldots,X_m)$ m

$$\sigma_m(X) \equiv \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) \equiv \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$$\operatorname{rk}_{\mathcal{L}_{ring}, T}^{\exists} \quad \text{if } T = \text{theory of fields} \quad \text{if } T = \text{theory of fields with } 2 \neq 0$$

$$\sigma_m(X) \qquad m$$

$$\pi_m(X_1, \dots, X_m) \qquad m$$

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$$\operatorname{rk}_{\mathcal{L}_{ring}, \mathcal{T}}^{\exists} \quad \text{if } \mathcal{T} = \text{theory of} \quad \text{if } \mathcal{T} = \text{theory of} \quad \text{fields with } 2 \neq 0$$

$$\sigma_m(X) \quad m \quad m$$

$$\pi_m(X_1, \dots, X_m) \quad m \quad 1$$

Outline

- 1. Introduction \checkmark
- 2. Understanding existential rank of formulae: a model-theoretic framework
- 3. Lower bounds for existentially definable subsets of a field, uniform upper bounds for existentially definable subsets of a field

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1, \ldots, X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m - 1 elements.

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) \geq m$.

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1, \ldots, X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m - 1 elements.

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) \geq m$.

Proof: Suppose that $\psi(X_1, \ldots, X_n)$ is an existential \mathcal{L}_{ring} -formula with m-1 quantifiers equivalent to φ in all intermediate extensions of L/K. We have that $L \models \varphi(a)$ and hence $L \models \psi(a)$.

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1, \ldots, X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m - 1 elements.

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) \geq m$.

Proof: Suppose that $\psi(X_1, \ldots, X_n)$ is an existential \mathcal{L}_{ring} -formula with m-1 quantifiers equivalent to φ in all intermediate extensions of L/K. We have that $L \models \varphi(a)$ and hence $L \models \psi(a)$.

There exists an intermediate extension K' of L/K generated by m-1 elements and such that $K' \models \psi(a)$. But then $K' \models \varphi(a)$.

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1, \ldots, X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m - 1 elements.

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) \geq m$.

Proof: Suppose that $\psi(X_1, \ldots, X_n)$ is an existential \mathcal{L}_{ring} -formula with m-1 quantifiers equivalent to φ in all intermediate extensions of L/K. We have that $L \models \varphi(a)$ and hence $L \models \psi(a)$.

There exists an intermediate extension K' of L/K generated by m-1 elements and such that $K' \models \psi(a)$. But then $K' \models \varphi(a)$.

Note: the above argument even shows $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}'}^{\exists}(\varphi) \geq m$ where \mathcal{T}' is the union of \mathcal{T} with the universal $\mathcal{L}_{\operatorname{ring}}$ -theory of L.

Consider the formula

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2).$$

We show that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\sigma_m) = m$, where \mathcal{T} is the theory of fields of characteristic 0.

Consider the formula

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2).$$

We show that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\sigma_m) = m$, where \mathcal{T} is the theory of fields of characteristic 0.

• Consider $K = \mathbb{R}(T)$, $L = K(U_1, \dots, U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We have $L \models \sigma_m(T)$, since $T = \sum_{i=1}^m U_i^2$.

Consider the formula

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2).$$

We show that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\sigma_m) = m$, where \mathcal{T} is the theory of fields of characteristic 0.

- Consider $K = \mathbb{R}(T)$, $L = K(U_1, \dots, U_{m-1})(\sqrt{T \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We have $L \models \sigma_m(T)$, since $T = \sum_{i=1}^m U_i^2$.
- Any subfield K' of L/K generated by m − 1 elements and for which K' ⊨ σ_m(T) must have transcendence degree at most m − 2 over K.

■ But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), *T* is not a sum of *m* squares in any intermediate field of *L/K* of transcendence degree less than *m* − 1 over *K*.

Sums of *m* squares

- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), *T* is not a sum of *m* squares in any intermediate field of *L*/*K* of transcendence degree less than *m* − 1 over *K*.
- We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\sigma_m) \geq m$ by (*).

Sums of *m* squares

- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), *T* is not a sum of *m* squares in any intermediate field of *L*/*K* of transcendence degree less than *m* − 1 over *K*.
- We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\sigma_m) \geq m$ by (*).

We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\sigma_m) = m$ where T is the theory of fields of characteristic 0.

Sums of *m* squares

■ But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), *T* is not a sum of *m* squares in any intermediate field of *L*/*K* of transcendence degree less than *m* − 1 over *K*.

• We conclude that
$$\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\sigma_m) \geq m$$
 by (*).

We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\sigma_m) = m$ where T is the theory of fields of characteristic 0.

Note: we did **not** show that there exists an intermediate field K' of L/K (or in fact any field) with $\operatorname{rk}_{K'}^{\exists}(S_m(K')) = m$.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\doteq Y_i^2).$$

We argue similarly as before. Let $K = \mathbb{F}_2(T_1, \ldots, T_m)$ and $L = \mathbb{F}_2(\sqrt{T_1}, \ldots, \sqrt{T_m})$.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\doteq Y_i^2).$$

We argue similarly as before. Let $K = \mathbb{F}_2(T_1, \ldots, T_m)$ and $L = \mathbb{F}_2(\sqrt{T_1}, \ldots, \sqrt{T_m})$.

We have K ⊨ π_m(T₁,..., T_m), but K' ⊭ π_m(T₁,..., T_m) for any intermediate field K' of L/K generated by m − 1 elements over K. Hence, there is no existential formula with m − 1 quantifiers which is equivalent to π_m for all intermediate extensions of L/K.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\doteq Y_i^2).$$

We argue similarly as before. Let $K = \mathbb{F}_2(T_1, \ldots, T_m)$ and $L = \mathbb{F}_2(\sqrt{T_1}, \ldots, \sqrt{T_m})$.

- We have K ⊨ π_m(T₁,..., T_m), but K' ⊭ π_m(T₁,..., T_m) for any intermediate field K' of L/K generated by m − 1 elements over K. Hence, there is no existential formula with m − 1 quantifiers which is equivalent to π_m for all intermediate extensions of L/K.
- Note: we did **not** show that there exists an intermediate extension K' of L/K (or in fact any field) for which rk[∃]_{K'}(π_m(K')) = m.

If K is a field with 2 ≠ 0 and a₁,..., a_m ∈ K, then the extension K(√a₁,...,√a_n)/K is a separable finite extension and thus generated by one element. (Primitive Element Theorem) Thus, if T is the theory of fields in which 2 ≠ 0, no obstruction as in (*) exists.

If K is a field with 2 ≠ 0 and a₁,..., a_m ∈ K, then the extension K(√a₁,...,√a_n)/K is a separable finite extension and thus generated by one element. (Primitive Element Theorem) Thus, if T is the theory of fields in which 2 ≠ 0, no obstruction as in (*) exists.

• Does this already imply that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\pi_m) = 1$?

Quantitative preservation theorem

Yes.

Theorem ("Quantitative preservation theorem")

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory, $m \in \mathbb{N}$. The following are equivalent:

- (i) $\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) \leq m$.
- (ii) For every L ⊨ T and every x ∈ φ(L) there is an L-substructure K of L generated by x and m further elements such that M ⊨ φ(ρ(x)) for every L-embedding ρ : K → M where M ⊨ T.

Quantitative preservation theorem

Yes.

Theorem ("Quantitative preservation theorem")

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory, $m \in \mathbb{N}$. The following are equivalent:

- (i) $\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) \leq m$.
- (ii) For every L ⊨ T and every x ∈ φ(L) there is an L-substructure K of L generated by x and m further elements such that M ⊨ φ(ρ(x)) for every L-embedding ρ : K → M where M ⊨ T.

An example of a specialisation hereof:

Corollary

Let T be the union of the \mathcal{L}_{ring} -theory of fields and some universal \mathcal{L}_{ring} -theory. Let φ be an existential \mathcal{L}_{ring} -formula and $m \in \mathbb{N}$. The following are equivalent:

(i)
$$\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) \leq m.$$

(ii) For every $L \models T$ and every $x \in \varphi(L)$, there exists a subfield K generated by x and m further elements of L such that $K \models \varphi(x)$.

Another application

Corollary

Let T be the theory of fields of characteristic 0. For \mathcal{L} -formulas φ_1, φ_2 with $\mathrm{rk}^\exists_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}(\varphi_1), \mathrm{rk}^\exists_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}(\varphi_2) \geq 1$ one has

$$\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\varphi_1 \wedge \varphi_2) \leq \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\varphi_1) + \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\varphi_2) - 1.$$

Proof idea.

If L_1/K and L_2/K are field extensions in characteristic 0 which are not purely transcendental and which are generated by m_1 respectively m_2 elements, then any compositum L_1L_2 is generated by $m_1 + m_2 - 1$ elements over K. Now invoke the previous corollary.

Explicit techniques

An example of an existential formula with one quantifier equivalent to π_2 for fields in which $2 \neq 0$ is given by

 $\exists Y((X_1 - X_2)^2 Y^4 - 2(X_1 + X_2) Y^2 + 1 \doteq 0 \lor (X_1 \doteq 0 \land X_2 \doteq 0)).$

Explicit techniques to construct existential formulas equivalent to a given formula and with the optimal number of quantifiers, will be discussed in upcoming work with Karim Becher.

Outline

- 1. Introduction \checkmark
- 2. Understanding existential rank of formulae: a model-theoretic framework \checkmark
- 3. Lower bounds for existentially definable subsets of a field, uniform upper bounds for existentially definable subsets of a field

Let $m \geq 1$.

Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.

¹A field K is called *large* if K((T))/K is an existentially closed extension.

Let $m \geq 1$.

- Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.
- If K is of characteristic 2, imperfect and large¹
 (e.g. K = 𝔽₂((𝒯))), then rk[∃]_K(𝒯_m(𝐾)) = 𝑘.

¹A field K is called *large* if K((T))/K is an existentially closed extension.

Let $m \geq 1$.

- Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.
- If K is of characteristic 2, imperfect and large¹
 (e.g. K = 𝔽₂((𝒯))), then rk[∃]_K(𝒯_m(𝐾)) = 𝑘.
- If *K* is a finitely generated extension of a perfect field K_0 , then $\mathrm{rk}_K^\exists(\pi_m(K)) = 1$.

¹A field K is called *large* if K((T))/K is an existentially closed extension.

Let $m \geq 1$.

- Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.
- If K is of characteristic 2, imperfect and large¹
 (e.g. K = 𝔽₂((𝒯))), then rk[∃]_K(𝒯_m(𝐾)) = 𝑘.
- If *K* is a finitely generated extension of a perfect field K_0 , then $\operatorname{rk}_{K}^{\exists}(\pi_m(K)) = 1$.

In particular, although there is no existential formula with m-1 quantifiers equivalent to π_m simultaneously for all intermediate fields of $\mathbb{F}_2(\sqrt{T_1}, \ldots, \sqrt{T_m})/\mathbb{F}_2(T_1, \ldots, T_m)$, such a formula does exist for each intermediate field individually!

¹A field K is called *large* if K((T))/K is an existentially closed extension.

For a field K, we define

For a field K, we define

 $\operatorname{rk}^{\exists,1}(K) = \sup\{\operatorname{rk}^{\exists}_{K}(D) \mid D \subseteq K \text{ existentially definable in } K\}.$

• If K is finite or algebraically closed, then $\operatorname{rk}^{\exists,1}(K) = 0$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K = ℝ, K = Q_p for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then rk^{∃,1}(K) ≤ 1.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K = ℝ, K = Q_p for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K = ℝ, K = Q_p for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.
- Pasten [Pas22], building on Kollár [Kol08]) If K is large and uncountable (e.g. K = C), then rk^{∃,1}(K(T)) = ∞.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K = ℝ, K = Q_p for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.
- Pasten [Pas22], building on Kollár [Kol08]) If K is large and uncountable (e.g. K = C), then rk^{∃,1}(K(T)) = ∞.
- If K is an infinite, finitely generated field, then rk^{∃,1}(K) ≥ 2. If rk^{∃,1}(Q) < ∞, then Z is not existentially definable in Q.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K = ℝ, K = Q_p for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.
- (Pasten [Pas22], building on Kollár [Kol08]) If K is large and uncountable (e.g. K = C), then rk^{∃,1}(K(T)) = ∞.
- If *K* is an infinite, finitely generated field, then $rk^{\exists,1}(K) \ge 2$. If $rk^{\exists,1}(\mathbb{Q}) < \infty$, then \mathbb{Z} is not existentially definable in \mathbb{Q} .
- **Question:** Is there a field K with $\operatorname{rk}^{\exists,1}(K) \notin \{0,1,\infty\}$?

References

[DDF21] Nicolas Daans, Philip Dittmann, and Arno Fehm. "Existential rank and essential dimension of diophantine sets". Available as arXiv:2102.06941. 2021.

[KM03] Nikita Karpenko and Alexander Merkurjev. "Essential dimension of quadrics". In: Inventiones Mathematicae 153.2 (2003), pp. 361–372.

[Kol08] János Kollár. "Diophantine subsets of function fields of curves". In: Algebra & Number Theory 2.3 (2008), pp. 299–311.

[Pas22] Hector Pasten. "Notes on the DPRM property for listable structures". In: The Journal of Symbolic Logic 87.1 (2022), pp. 273–312.

Nicolas Daans *E-mail*: nicolas.daans@uantwerpen.be *Office*: M.G.223

Bonus slides

4 Bonus slides

- Tuples of *p*th powers in characteristic *p*
- Existential vs positive-existential
- Large fields

Tuples of *p***th powers in characteristic** *p*

Let K be a field which is finitely generated over a perfect field K_0 of characteristic p > 0. There exists $r \in \mathbb{N} \setminus p\mathbb{N}$ (depending on K) such that for all $x, y \in K$ we have that

$$\exists z_1, z_2 \in K : x = z_1^p \land x = z_2^p$$

if and only if there exists $z \in K$ such that

$$(x^{r} + 1 = 0 \land y = z^{p}) \lor (x^{r} + 1 \neq 0$$

$$\land (x^{r} + 1)^{p+1}y + (x^{r} + 1)^{p+1}y^{p^{2}} + (x^{r} + 1)^{2p+1} + x^{r} + 1 = z^{p})$$

If K is imperfect, then r cannot be bounded uniformly for all finite separable extensions of K.

Existential vs positive-existential

For a language \mathcal{L} , an \mathcal{L} -theory T and an \mathcal{L} -formula φ , we define its *existential rank*

$$\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) = \inf \left\{ m \in \mathbb{N} \ \middle| \begin{array}{c} \varphi \text{ is equivalent modulo } \mathcal{T} \text{ to an} \\ \text{existential } \mathcal{L}\text{-formula with } m \text{ quantifiers} \end{array} \right.$$

and its positive-existential rank

$$\operatorname{rk}_{\mathcal{L},T}^{\scriptscriptstyle \exists^+}(arphi) = \inf \left\{ m \in \mathbb{N} \; \middle| \;
ight.$$

 φ is equivalent modulo T to a positive existential \mathcal{L} -formula with m quantifiers $\}$.

Clearly one always has $\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) \leq \operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists^+}(\varphi)$.

Existential vs positive-existential

Let $\mathcal{L} = \mathcal{L}_{ring}$, T a theory containing the theory of fields, φ an \mathcal{L}_{ring} -formula. Then precisely one of the following occurs:

1. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi),$ 2. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = 0$ and $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi) = 1,$ 3. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = 1$ and $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi) = 2.$

Furthermore, case (3) only occurs in very special cases; e.g. it requires that T has both finite and infinite models.

Existential vs positive-existential

Let $\mathcal{L} = \mathcal{L}_{ring}$, T a theory containing the theory of fields, φ an \mathcal{L}_{ring} -formula. Then precisely one of the following occurs:

1. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi),$ 2. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = 0$ and $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi) = 1,$ 3. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = 1$ and $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi) = 2.$

Furthermore, case (3) only occurs in very special cases; e.g. it requires that T has both finite and infinite models. Examples with T the theory of fields:

- The formula $x \neq 0$ is an example of case (2).
- The formula $\exists y(y^2 \neq y)$ is an example of case (3).

Large fields

- A field K is called *large* if K is existentially closed in the field of formal Laurent series K((T)).
- Equivalently, a field *K* is large if every smooth curve over *K* has either zero or infinitely many *K*-rational points.
- Examples of large fields: henselian valued fields (e.g. Q_p, K((T))), real closed fields (e.g. ℝ), pseudo-algebraically closed fields (e.g. non-principal ultraproducts of finite fields, separably closed fields)

