

How many quantifiers are needed to existentially define a given subset of a field?

Based on joint work with Arno Fehm & Philip Dittmann

Nicolas Daans

05 December 2022

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$.

D is called *existentially definable* (in K^n) if $D = \varphi(K)$ for some existential formula φ in n free variables in the first-order language of rings with parameters from K.

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$.

D is called *existentially definable* (in K^n) if $D = \varphi(K)$ for some existential formula φ in n free variables in the first-order language of rings with parameters from K.

Equivalently,

$$D = \{\underline{x} \in K^n \mid f_1(\underline{x},\underline{Y}), \dots, f_r(\underline{x},\underline{Y}) \text{ have a common zero in } K^m\}$$

for some $r, m \in \mathbb{N}$, $f_1, \ldots, f_r \in K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$.

Examples of existentially definable subsets of fields (n = 1):

■ Finite and cofinite subsets (quantifier-freely definable).

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field K:

$$\square K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field K:

$$\square K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

 \blacksquare The set of sums of m squares of a field, i.e.

$$S_m(K) = \left\{ x \in K \mid \exists y_1, \dots, y_m \in K : x = \sum_{i=1}^m y_i^2 \right\}.$$

Given a field K, which subsets of K are existentially definable?

■ $K = \mathbb{C}$: only finite and cofinite subsets,

- $K = \mathbb{C}$: only finite and cofinite subsets,
- $K = \mathbb{R}$: finite unions of intervals,

- $K = \mathbb{C}$: only finite and cofinite subsets,
- $K = \mathbb{R}$: finite unions of intervals,
- $K = \mathbb{Q}$: many existentially definable subsets

- $K = \mathbb{C}$: only finite and cofinite subsets,
- $K = \mathbb{R}$: finite unions of intervals,
- $K = \mathbb{Q}$: many existentially definable subsets
 - The set of non-negative numbers:

$$\mathbb{Q}_{\geq 0} = \{ x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \}$$

Given a field K, which subsets of K are existentially definable?

- $K = \mathbb{C}$: only finite and cofinite subsets,
- $K = \mathbb{R}$: finite unions of intervals,
- $K = \mathbb{Q}$: many existentially definable subsets
 - The set of non-negative numbers:

$$\mathbb{Q}_{\geq 0} = \{ x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \}$$

■ Any local subring of \mathbb{Q} . E.g. if p is a prime number with $p \equiv 3 \mod 4$, then

$$\mathbb{Z}_{(p)} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z} \setminus p\mathbb{Z} \}$$

= \{ x \in \mathbb{Q} \ | \frac{\partial y_1, y_2, y_3 \in \mathbb{Q} : 1 + (p - 1)px^2 = y_1^2 + y_2^2 + py_3^2 \}.

Given a field K, which subsets of K are existentially definable?

- $K = \mathbb{C}$: only finite and cofinite subsets,
- $K = \mathbb{R}$: finite unions of intervals,
- $K = \mathbb{Q}$: many existentially definable subsets
 - The set of non-negative numbers:

$$\mathbb{Q}_{\geq 0} = \{ x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \}$$

■ Any local subring of \mathbb{Q} . E.g. if p is a prime number with $p \equiv 3 \mod 4$, then

$$\mathbb{Z}_{(p)} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z} \setminus p\mathbb{Z} \}$$

$$= \{ x \in \mathbb{Q} \mid \exists y_1, y_2, y_3 \in \mathbb{Q} : 1 + (p-1)px^2 = y_1^2 + y_2^2 + py_3^2 \}.$$

 \blacksquare $\mathbb{Q} \setminus \mathbb{Z}$ [Koe16]

Given a field K, which subsets of K are existentially definable?

- $K = \mathbb{C}$: only finite and cofinite subsets,
- $K = \mathbb{R}$: finite unions of intervals,
- $K = \mathbb{Q}$: many existentially definable subsets
 - The set of non-negative numbers:

$$\mathbb{Q}_{\geq 0} = \{ x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \}$$

■ Any local subring of \mathbb{Q} . E.g. if p is a prime number with $p \equiv 3 \mod 4$, then

$$\mathbb{Z}_{(p)} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z} \setminus p\mathbb{Z} \}$$

$$= \{ x \in \mathbb{Q} \mid \exists y_1, y_2, y_3 \in \mathbb{Q} : 1 + (p-1)px^2 = y_1^2 + y_2^2 + py_3^2 \}.$$

- ℚ\ℤ[Koe16]
- **Question:** Is \mathbb{Z} existentially definable in \mathbb{Q} ?

■ In general, to decide whether a given subset of a field K (or more generally, a subset of K^n) is existentially definable, is hard.

- In general, to decide whether a given subset of a field K (or more generally, a subset of K^n) is existentially definable, is hard.
- If *K* has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.

- In general, to decide whether a given subset of a field K (or more generally, a subset of K^n) is existentially definable, is hard.
- If *K* has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.
- The study of existentially definable subsets of a field is closely linked to decidability questions related to Hilbert's 10th Problem.

We can ask: if a subset D is existentially definable, what is the "simplest" description which can be given to it?

We can ask: if a subset D is existentially definable, what is the "simplest" description which can be given to it? We will measure complexity by number of quantifiers:

Definition

Let K be a field, $n \in \mathbb{N}$, $D \subseteq K^n$. The existential rank of D (in K^n) is defined to be the smallest natural number m such that $D = \varphi(K)$ for some existential $\mathcal{L}_{\text{ring}}(K)$ -formula φ with m quantifiers. We denote it by $\operatorname{rk}_K^{\exists}(D)$. If D is not existentially definable, we set $\operatorname{rk}_K^{\exists}(D) = \infty$.

 (\mathcal{L}_{ring}) is the language of rings, $\mathcal{L}_{ring}(K)$ the language of rings with parameters from K)

■ For any field K, $\operatorname{rk}_K^{\exists}(S_m(K)) \leq m$.

- For any field K, $\operatorname{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}^\exists_\mathbb{Q}(S_m(\mathbb{Q})) \le 4$ for all m.

- For any field K, $\operatorname{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}^{\exists}_{\mathbb{Q}}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$.

- For any field K, $\operatorname{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}^{\exists}_{\mathbb{Q}}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$.

■ Question: Do we have $\mathrm{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0})=3$?

- For any field K, $\operatorname{rk}_K^\exists (S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}^{\exists}_{\mathbb{Q}}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$.

- Question: Do we have $\mathrm{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0})=3$?
- **Question**: Is there any subset D of \mathbb{Q} with $2 < \mathrm{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?

- For any field K, $\operatorname{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\mathrm{rk}^{\exists}_{\mathbb{Q}}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{O}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$.

- Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?
- **Question**: Is there any subset D of \mathbb{Q} with $2 < \mathrm{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?
- Determining $\operatorname{rk}_K^{\exists}(D)$ is in general hard.

Proposition

Suppose that $\mathbb Z$ is existentially definable in $\mathbb Q$. Then there exists $N\in\mathbb N$ such that $\mathrm{rk}^3_\mathbb D(D)\leq N$ for all existentially definable $D\subseteq\mathbb Q$.

Proposition

Suppose that $\mathbb Z$ is existentially definable in $\mathbb Q$. Then there exists $N\in\mathbb N$ such that $\mathrm{rk}^3_\mathbb D(D)\leq N$ for all existentially definable $D\subseteq\mathbb Q$.

Proof sketch.

There exists $M \in \mathbb{N}$ such that every existentially definable subset $D \subseteq \mathbb{Z}$ is existentially definable in \mathbb{Z} with M quantifiers (see [Jon82]; one can take M=10 [Sun21]). When \mathbb{Z} is existentially definable in \mathbb{Q} , \mathbb{Z} and \mathbb{Q} become existentially bi-interpretable, hence one similarly obtains a bound for the rank of existentially definable subsets of \mathbb{Q} .

Proposition

Suppose that $\mathbb Z$ is existentially definable in $\mathbb Q$. Then there exists $N \in \mathbb N$ such that $\mathrm{rk}_{\mathbb D}^{\mathbb D}(D) \leq N$ for all existentially definable $D \subseteq \mathbb Q$.

Proof sketch.

There exists $M \in \mathbb{N}$ such that every existentially definable subset $D \subseteq \mathbb{Z}$ is existentially definable in \mathbb{Z} with M quantifiers (see [Jon82]; one can take M=10 [Sun21]). When \mathbb{Z} is existentially definable in \mathbb{Q} , \mathbb{Z} and \mathbb{Q} become existentially bi-interpretable, hence one similarly obtains a bound for the rank of existentially definable subsets of \mathbb{Q} .

Proposition

Every recursively enumerable subset $D \subseteq \mathbb{Q}$ (in particular every existentially definable subset) is definable by an $\forall_{10} \exists_{10} - \mathcal{L}_{ring}$ -formula.

Proof sketch.

Use that $\mathbb{Q}\setminus\mathbb{Z}$ is existentially definable in \mathbb{Q} with 10 quantifiers; use this to construct a bi-interpretation of \mathbb{Z} and \mathbb{Q} as before.

Outline

- 1. Introduction ✓
- 2. Understanding existential rank of formulae: a model-theoretic framework
- 3. Lower bounds for existentially definable subsets of a field, uniform upper bounds for existentially definable subsets of a field

Consider for each $m \in \mathbb{N}$ the following formulas in the language of rings:

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

Can $\sigma_m(X)$ or $\pi_m(X_1, \ldots, X_n)$ be written with fewer quantifiers "independently of the underlying field"? I.e. can $S_m(K)$ and $(\Box K)^m$ be defined *uniformly in the class of fields* with fewer than m quantifiers?

Definition

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, T an $\mathcal L$ -theory. The $\mathcal L$ -existential rank of φ modulo T, denoted by $\mathrm{rk}_{\mathcal L,T}^{\exists}(\varphi)$, is the smallest integer m such that $T\models\varphi\leftrightarrow\psi$ for some existential $\mathcal L$ -formula ψ with m quantifiers. We set $\mathrm{rk}_{\mathcal L,T}^{\exists}(\varphi)=\infty$ if no such integer m exists.

Remarks:

Definition

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, T an $\mathcal L$ -theory. The $\mathcal L$ -existential rank of φ modulo T, denoted by $\mathrm{rk}_{\mathcal L,T}^{\exists}(\varphi)$, is the smallest integer m such that $T\models\varphi\leftrightarrow\psi$ for some existential $\mathcal L$ -formula ψ with m quantifiers. We set $\mathrm{rk}_{\mathcal L,T}^{\exists}(\varphi)=\infty$ if no such integer m exists.

Remarks:

■ We recover from this the existential rank of a subset $D = \varphi(K)$ of some field K, namely $\operatorname{rk}_K^{\exists}(D) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}(K),\operatorname{Th}_{\mathcal{L}_{\operatorname{ring}}(K)}(K)}(\varphi)$.

Definition

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, T an $\mathcal L$ -theory. The $\mathcal L$ -existential rank of φ modulo T, denoted by $\mathrm{rk}_{\mathcal L,T}^{\exists}(\varphi)$, is the smallest integer m such that $T\models\varphi\leftrightarrow\psi$ for some existential $\mathcal L$ -formula ψ with m quantifiers. We set $\mathrm{rk}_{\mathcal L,T}^{\exists}(\varphi)=\infty$ if no such integer m exists.

Remarks:

- We recover from this the existential rank of a subset $D = \varphi(K)$ of some field K, namely $\operatorname{rk}_K^{\exists}(D) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}(K),\operatorname{Th}_{\mathcal{L}_{\operatorname{ring}}(K)}(K)}(\varphi)$.
- For \mathcal{L} -formulas φ_1, φ_2 and an \mathcal{L} -theory T one has

$$\begin{split} \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}\wedge\varphi_{2}) &\leq \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}) + \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{2}) \\ \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}\vee\varphi_{2}) &\leq \max\{\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}),\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{2})\} \end{split}$$

In the language of rings \mathcal{L}_{ring} and with

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$\mathrm{rk}_{\mathcal{L}_{ring},\mathcal{T}}^{\exists}$	$\begin{array}{c} \text{if } \mathcal{T} = \text{theory of} \\ \text{fields} \end{array}$	
$\sigma_m(X)$		
$\pi_m(X_1,\ldots,X_m)$		

In the language of rings \mathcal{L}_{ring} and with

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$\mathrm{rk}_{\mathcal{L}_{ring}, \mathcal{T}}^{\exists}$	$\begin{array}{c} \text{if } \mathcal{T} = \text{theory of} \\ \text{fields} \end{array}$	
$\sigma_m(X)$	m	
$\pi_m(X_1,\ldots,X_m)$	m	

In the language of rings \mathcal{L}_{ring} and with

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$\mathrm{rk}_{\mathcal{L}_{ring},\mathcal{T}}^{\exists}$	$\begin{array}{c} \text{if } \mathcal{T} = \text{theory of} \\ \text{fields} \end{array}$	if $T =$ theory of fields with $2 \neq 0$
$\sigma_m(X)$	m	
$\pi_m(X_1,\ldots,X_m)$	m	

Existential rank of formulas

In the language of rings \mathcal{L}_{ring} and with

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$\mathrm{rk}_{\mathcal{L}_{ring}, \mathcal{T}}^{\exists}$	$\begin{array}{c} \text{if } \mathcal{T} = \text{theory of} \\ \text{fields} \end{array}$	if $T =$ theory of fields with $2 \neq 0$
$\sigma_m(X)$	m	m
$\pi_m(X_1,\ldots,X_m)$	m	1

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1,\ldots,X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m-1 elements. (*)

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\varphi) \geq m$.

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1,\ldots,X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m-1 elements. (*)

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\varphi)\geq m$.

Proof: Suppose that $\psi(X_1,\ldots,X_n)$ is an existential $\mathcal{L}_{\text{ring}}$ -formula with m-1 quantifiers equivalent to φ in all intermediate extensions of L/K. We have that $L \models \varphi(a)$ and hence $L \models \psi(a)$.

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1, \ldots, X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m-1 elements. (*)

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\varphi)\geq m$.

Proof: Suppose that $\psi(X_1, \ldots, X_n)$ is an existential $\mathcal{L}_{\text{ring}}$ -formula with m-1 quantifiers equivalent to φ in all intermediate extensions of L/K. We have that $L \models \varphi(a)$ and hence $L \models \psi(a)$.

There exists an intermediate extension K' of L/K generated by m-1 elements and such that $K' \models \psi(a)$. But then $K' \models \varphi(a)$.

Proposition

Let T be the theory of fields, $m \ge 1$. Consider for an existential \mathcal{L}_{ring} -formula $\varphi(X_1,\ldots,X_n)$ the following condition:

There exists an extension of fields L/K and $a \in K^n$ such that $L \models \varphi(a)$, but $K' \not\models \varphi(a)$ for every subextension K' of L/K generated by m-1 elements. (*)

Then $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) \geq m$.

Proof: Suppose that $\psi(X_1, \ldots, X_n)$ is an existential $\mathcal{L}_{\text{ring}}$ -formula with m-1 quantifiers equivalent to φ in all intermediate extensions of L/K. We have that $L \models \varphi(a)$ and hence $L \models \psi(a)$.

There exists an intermediate extension K' of L/K generated by m-1 elements and such that $K' \models \psi(a)$. But then $K' \models \varphi(a)$.

Note: the above argument even shows $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}(K), \mathcal{T}'}^{\exists}(\varphi) \geq m$ where \mathcal{T}' is the union of \mathcal{T} with the universal $\mathcal{L}_{\operatorname{ring}}(K)$ -theory of \mathcal{L} .

Consider the formula

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2).$$

We show that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\sigma_m)=m$, where \mathcal{T} is the theory of fields of characteristic 0.

Consider the formula

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2).$$

We show that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\sigma_m)=m$, where \mathcal{T} is the theory of fields of characteristic 0.

■ Consider $K = \mathbb{R}(T)$, $L = K(U_1, \dots, U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We have $L \models \sigma_m(T)$, since $T = \sum_{i=1}^m U_i^2$.

Consider the formula

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2).$$

We show that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\sigma_m)=m$, where \mathcal{T} is the theory of fields of characteristic 0.

- Consider $K = \mathbb{R}(T)$, $L = K(U_1, \dots, U_{m-1})(\sqrt{T \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T \sum_{i=1}^{m-1} U_i^2} \in L$. We have $L \models \sigma_m(T)$, since $T = \sum_{i=1}^m U_i^2$.
- Any subfield K' of L/K generated by m-1 elements and for which $K' \models \sigma_m(T)$ must have transcendence degree at most m-2 over K.

■ But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K.

- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K.
- We conclude that $\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^\exists(\sigma_m) \geq m$ by the previous proposition.

- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K.
- We conclude that $\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^\exists(\sigma_m) \geq m$ by the previous proposition.

We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\sigma_m)=m$ where T is the theory of fields of characteristic 0.

- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K.
- We conclude that $\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\sigma_m) \geq m$ by the previous proposition.

We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\sigma_m) = m$ where T is the theory of fields of characteristic 0.

Note: we did **not** show that there exists an intermediate field K' of L/K (or in fact any field) with $\operatorname{rk}_{K'}^{\exists}(S_m(K')) = m$.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2).$$

We argue similarly as before. Let $K = \mathbb{F}_2(T_1, \dots, T_m)$ and $L = \mathbb{F}_2(\sqrt{T_1}, \dots, \sqrt{T_m})$.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^mX_i\doteq Y_i^2).$$

We argue similarly as before. Let $K = \mathbb{F}_2(T_1, \dots, T_m)$ and $L = \mathbb{F}_2(\sqrt{T_1}, \dots, \sqrt{T_m})$.

■ We have $K \models \pi_m(T_1, \ldots, T_m)$, but $K' \not\models \pi_m(T_1, \ldots, T_m)$ for any intermediate field K' of L/K generated by m-1 elements over K. Hence, there is no existential formula with m-1 quantifiers which is equivalent to π_m for all intermediate extensions of L/K.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^mX_i\doteq Y_i^2).$$

We argue similarly as before. Let $K = \mathbb{F}_2(T_1, \dots, T_m)$ and $L = \mathbb{F}_2(\sqrt{T_1}, \dots, \sqrt{T_m})$.

- We have $K \models \pi_m(T_1, \ldots, T_m)$, but $K' \not\models \pi_m(T_1, \ldots, T_m)$ for any intermediate field K' of L/K generated by m-1 elements over K. Hence, there is no existential formula with m-1 quantifiers which is equivalent to π_m for all intermediate extensions of L/K.
- Note: we did **not** show that there exists an intermediate extension K' of L/K (or in fact any field) for which $\mathrm{rk}_{K'}^{\exists}(\pi_m(K')) = m$.

■ If K is a field with $2 \neq 0$ and $a_1, \ldots, a_m \in K$, then the extension $K(\sqrt{a_1}, \ldots, \sqrt{a_n})/K$ is a separable finite extension and thus generated by one element. (Primitive Element Theorem) Thus, if T is the theory of fields in which $2 \neq 0$, no obstruction as in (*) exists.

- If K is a field with $2 \neq 0$ and $a_1, \ldots, a_m \in K$, then the extension $K(\sqrt{a_1}, \ldots, \sqrt{a_n})/K$ is a separable finite extension and thus generated by one element. (Primitive Element Theorem) Thus, if T is the theory of fields in which $2 \neq 0$, no obstruction as in (*) exists.
- Does this already imply that $\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},T}^\exists(\pi_m)=1$?

Quantitative preservation theorem

Yes.

Theorem ("Quantitative preservation theorem")

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, T an $\mathcal L$ -theory, $m \in \mathbb N$. The following are equivalent:

- (i) $\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) \leq m$.
- (ii) For every $L \models T$ and every $x \in \varphi(L)$ there is an \mathcal{L} -substructure K of L generated by x and m further elements such that $M \models \varphi(\rho(x))$ for every \mathcal{L} -embedding $\rho : K \to M$ where $M \models T$.

Quantitative preservation theorem

Yes.

Theorem ("Quantitative preservation theorem")

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, T an $\mathcal L$ -theory, $m \in \mathbb N$. The following are equivalent:

- (i) $\operatorname{rk}_{\mathcal{L},T}^{\exists}(\varphi) \leq m$.
- (ii) For every $L \models T$ and every $x \in \varphi(L)$ there is an \mathcal{L} -substructure K of L generated by x and m further elements such that $M \models \varphi(\rho(x))$ for every \mathcal{L} -embedding $\rho: K \to M$ where $M \models T$.

An example of a specialisation hereof:

Corollary

Let T be the union of the $\mathcal{L}_{\text{ring}}$ -theory of fields and some universal $\mathcal{L}_{\text{ring}}$ -theory. Let φ be an existential $\mathcal{L}_{\text{ring}}$ -formula and $m \in \mathbb{N}$. The following are equivalent:

- (i) $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\varphi) \leq m$.
- (ii) For every $L \models T$ and every $x \in \varphi(L)$, there exists a subfield K generated by x and m further elements of L such that $K \models \varphi(x)$.

Another application

Corollary

Let T be the theory of fields of characteristic 0. For \mathcal{L} -formulas φ_1, φ_2 with $\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}^{\exists}(\varphi_1), \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}^{\exists}(\varphi_2) \geq 1$ one has

$$\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\,\mathcal{T}}^{\exists}(\varphi_{1}\wedge\varphi_{2})\leq\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\,\mathcal{T}}^{\exists}(\varphi_{1})+\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\,\mathcal{T}}^{\exists}(\varphi_{2})-1.$$

Proof idea.

If L_1/K and L_2/K are field extensions in characteristic 0 which are not purely transcendental and which are generated by m_1 respectively m_2 elements, then any compositum L_1L_2 is generated by m_1+m_2-1 elements over K. Now invoke the previous corollary.

Explicit techniques

An example of an existential formula with one quantifier equivalent to π_2 for fields in which $2 \neq 0$ is given by

$$\exists Y((X_1-X_2)^2Y^4-2(X_1+X_2)Y^2+1 \doteq 0 \lor (X_1 \doteq 0 \land X_2 \doteq 0)).$$

Explicit techniques to construct existential formulas equivalent to a given formula and with the optimal number of quantifiers, will be discussed in upcoming work with Karim Becher.

Outline

- 1. Introduction ✓
- 2. Understanding existential rank of formulae: a model-theoretic framework √
- 3. Lower bounds for existentially definable subsets of a field, uniform upper bounds for existentially definable subsets of a field

Let m > 1.

■ Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_K^{\exists}(S_m(K)) = m$ for each $m \in \mathbb{N}$.

¹A field K is called *large* if K((T))/K is an existentially closed extension.

Let m > 1.

- Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.
- If K is of characteristic 2, imperfect and large¹ (e.g. $K = \mathbb{F}_2((T))$), then $\operatorname{rk}_K^{\exists}(\pi_m(K)) = m$.

¹A field K is called *large* if K((T))/K is an existentially closed extension.

Let m > 1.

- Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.
- If K is of characteristic 2, imperfect and large¹ (e.g. $K = \mathbb{F}_2((T))$), then $\mathrm{rk}_K^{\exists}(\pi_m(K)) = m$.
- If K is a finitely generated extension of a perfect field K_0 , then $\operatorname{rk}_K^\exists (\pi_m(K)) = 1$.

¹A field K is called *large* if K((T))/K is an existentially closed extension.

Let m > 1.

- Through a limit construction, one can show that there exists a field K where $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$ for each $m \in \mathbb{N}$.
- If K is of characteristic 2, imperfect and large¹ (e.g. $K = \mathbb{F}_2((T))$), then $\operatorname{rk}_K^{\exists}(\pi_m(K)) = m$.
- If K is a finitely generated extension of a perfect field K_0 , then $\operatorname{rk}_K^{\exists}(\pi_m(K))=1$. In particular, although there is no existential formula with m-1 quantifiers equivalent to π_m simultaneously for all intermediate fields of $\mathbb{F}_2(\sqrt{T_1},\ldots,\sqrt{T_m})/\mathbb{F}_2(T_1,\ldots,T_m)$, such a formula does exist for each intermediate field individually!

¹A field K is called *large* if K((T))/K is an existentially closed extension.

For a field K, we define

For a field K, we define

$$\operatorname{rk}^{\exists,1}(K)=\sup\{\operatorname{rk}_K^\exists(D)\mid D\subseteq K \text{ existentially definable in } K\}.$$

■ If K is finite or algebraically closed, then $\operatorname{rk}^{\exists,1}(K) = 0$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If $K = \mathbb{R}$, $K = \mathbb{Q}_p$ for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then $\mathrm{rk}^{\exists,1}(K) \leq 1$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If $K = \mathbb{R}$, $K = \mathbb{Q}_p$ for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then $\mathrm{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If $K = \mathbb{R}$, $K = \mathbb{Q}_p$ for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then $\mathrm{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\operatorname{rk}^{\exists,1}(K) = \infty$.
- (Pasten [Pas22], building on Kollár [Kol08]) $\operatorname{rk}^{\exists,1}(\mathbb{C}(T)) = \infty$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If $K = \mathbb{R}$, $K = \mathbb{Q}_p$ for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then $\mathrm{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\operatorname{rk}^{\exists,1}(K) = \infty$.
- (Pasten [Pas22], building on Kollár [Kol08]) $\operatorname{rk}^{\exists,1}(\mathbb{C}(T)) = \infty$.
- If K is an infinite, finitely generated field, then $\mathrm{rk}^{\exists,1}(K) \geq 2$. If $\mathrm{rk}^{\exists,1}(\mathbb{Q}) < \infty$, then \mathbb{Z} is not existentially definable in \mathbb{Q} .

For a field K, we define

- If K is finite or algebraically closed, then $\operatorname{rk}^{\exists,1}(K) = 0$.
- If $K = \mathbb{R}$, $K = \mathbb{Q}_p$ for some prime number p, or K is perfect pseudo-algebraically closed (e.g. an infinite algebraic extension of a finite field), then $\mathrm{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\operatorname{rk}^{\exists,1}(K) = \infty$.
- (Pasten [Pas22], building on Kollár [Kol08]) $\operatorname{rk}^{\exists,1}(\mathbb{C}(T)) = \infty$.
- If K is an infinite, finitely generated field, then $\mathrm{rk}^{\exists,1}(K) \geq 2$. If $\mathrm{rk}^{\exists,1}(\mathbb{Q}) < \infty$, then \mathbb{Z} is not existentially definable in \mathbb{Q} .
- **Question:** Is there a field K with $\mathrm{rk}^{\exists,1}(K) \not\in \{0,1,\infty\}$?

References

[BF03] Grégory Berhuy and Giordano Favi. "Essential Dimension: A functorial point of view (after

A. Merkurjev)". In: Documenta Mathematica 8 (2003), pp. 279-330.

[DDF21] Nicolas Daans, Philip Dittmann, and Arno Fehm. "Existential rank and essential dimension of

diophantine sets". Available as arXiv:2102.06941. 2021.

[Jon82] James P. Jones. "Universal Diophantine equation". In: Journal of Symbolic Logic 47 (1982),

pp. 549-571.

[KM03] Nikita Karpenko and Alexander Merkurjev. "Essential dimension of quadrics". In: Inventiones

Mathematicae 153.2 (2003), pp. 361-372.

[Koe16] Jochen Koenigsmann. "Defining Z in Q". In: Annals of Mathematics. 183 (2016), pp. 73–93.

[Kol08] János Kollár. "Diophantine subsets of function fields of curves". In: Algebra & Number Theory 2.3

(2008), pp. 299–311.

[Pas22] Hector Pasten. "Notes on the DPRM property for listable structures". In: The Journal of Symbolic

Logic 87.1 (2022), pp. 273-312.

[Sun21] Zhi-Wei Sun. "Further results on Hilbert's Tenth Problem". In: Science China Mathematics 64.2

(2021), pp. 281-306.

Nicolas Daans

E-mail: nicolas.daans@uantwerpen.be

Office: M.G.223

Bonus slides

- 4 Bonus slides
 - Tuples of *p*th powers in characteristic *p*
 - Existential vs positive-existential
 - Large fields

Tuples of pth powers in characteristic p

Let K be a field which is finitely generated over a perfect field K_0 of characteristic p>0. There exists $r\in\mathbb{N}\setminus p\mathbb{N}$ (depending on K) such that for all $x,y\in K$ we have that

$$\exists z_1, z_2 \in K : x = z_1^p \land x = z_2^p$$

if and only if there exists $z \in K$ such that

$$(x^r + 1 = 0 \land y = z^p) \lor (x^r + 1 \neq 0$$
$$\land (x^r + 1)^{p+1}y + (x^r + 1)^{p+1}y^{p^2} + (x^r + 1)^{2p+1} + x^r + 1 = z^p)$$

If K is imperfect, then r cannot be bounded uniformly for all finite separable extensions of K.

Existential vs positive-existential

For a language \mathcal{L} , an \mathcal{L} -theory T and an \mathcal{L} -formula φ , we define its existential rank

$$\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) = \inf \left\{ m \in \mathbb{N} \; \middle| \; \begin{array}{c} \varphi \text{ is equivalent modulo } \mathcal{T} \text{ to an} \\ \text{existential } \mathcal{L}\text{-formula with } m \text{ quantifiers} \end{array} \right\}$$

and its positive-existential rank

$$\operatorname{rk}_{\mathcal{L},T}^{\scriptscriptstyle \exists^+}(\varphi) = \inf \left\{ m \in \mathbb{N} \; \middle| \; \begin{array}{c} \varphi \text{ is equivalent modulo } T \text{ to a positive} \\ \text{existential } \mathcal{L}\text{-formula with } m \text{ quantifiers} \end{array} \right\}.$$

Clearly one always has $\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) \leq \operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists^+}(\varphi)$.

Existential vs positive-existential

Let $\mathcal{L}=\mathcal{L}_{\text{ring}}$, T a theory containing the theory of fields, φ an $\mathcal{L}_{\text{ring}}$ -formula. Then precisely one of the following occurs:

- 1. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi)$,
- 2. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists}(\varphi)=0$ and $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},T}^{\exists^{+}}(\varphi)=1$,
- 3. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = 1 \text{ and } \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^+}(\varphi) = 2.$

Furthermore, case (3) only occurs in very special cases; e.g. it requires that T has both finite and infinite models.

Existential vs positive-existential

Let $\mathcal{L}=\mathcal{L}_{\text{ring}}$, T a theory containing the theory of fields, φ an $\mathcal{L}_{\text{ring}}$ -formula. Then precisely one of the following occurs:

- 1. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^{+}}(\varphi)$,
- 2. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\varphi)=0$ and $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists^{+}}(\varphi)=1$,
- 3. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists}(\varphi) = 1 \text{ and } \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists^+}(\varphi) = 2.$

Furthermore, case (3) only occurs in very special cases; e.g. it requires that T has both finite and infinite models. Examples with T the theory of fields:

- The formula $x \neq 0$ is an example of case (2).
- The formula $\exists y(y^2 \neq y)$ is an example of case (3).

Large fields

- A field K is called *large* if K is existentially closed in the field of formal Laurent series K((T)).
- Equivalently, a field K is large if every smooth curve over K has either zero or infinitely many K-rational points.
- Examples of large fields: henselian valued fields (e.g. \mathbb{Q}_p , K((T))), real closed fields (e.g. \mathbb{R}), pseudo-algebraically closed fields (e.g. non-principal ultraproducts of finite fields, separably closed fields)

