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Existentially definable subsets

Let K be a field, D ⊆ Kn for some n ∈ N.
D is called existentially definable (in Kn) if D = ϕ(K ) for some
existential formula ϕ in n free variables in the first-order language of
rings with parameters from K .

Equivalently,

D = {x ∈ Kn | f1(x ,Y ), . . . , fr (x ,Y ) have a common zero in Km}

for some r ,m ∈ N, f1, . . . , fr ∈ K [X1, . . . ,Xn,Y1, . . . ,Ym].
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Existentially definable subsets
Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

The set of squares of the field K :

�K = {x ∈ K | ∃y ∈ K : x = y2}.

For K = Q, the set of non-negative rationals:

Q≥0 = {x ∈ Q | ∃y1, . . . , y4 ∈ Q : x = y2
1 + y2

2 + y2
3 + y2

4 }.

The set of sums of m squares of a field, i.e.

Sm(K ) =

{
x ∈ K

∣∣∣∣∣∃y1, . . . , ym ∈ K : x =
m∑
i=1

y2
i

}
.
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Existentially definable subsets

In general, to decide whether a given subset of a field K (or
more generally, a subset of Kn) is existentially definable, is hard.

If K has a “rich arithmetic” (e.g. number field), many subsets
could be existentially definable.

e.g. Question: Is Z an existentially definable subset of Q?
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How many quantifiers?

We can ask: if a subset D is existentially definable, what is the
“simplest” description which can be given to it?
There are different ways we could attach a number to an existentially
definable set to express its simplicity or complexity. We will use the
following:

Definition

Let K be a field, n ∈ N, D ⊆ Kn. The existential rank of D (in Kn) is defined to be the
smallest natural number m such that D = ϕ(K) for some existential Lring(K)-formula
with m quantifiers. We denote it by rk∃

K (D). If D is not existentially definable, we set
rk∃

K (D) =∞.

(Lring is the language of rings, Lring(K) the language of rings with parameters from K)
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How many quantifiers?

For any field K , rk∃
K (Sm(K )) ≤ m.

Since for K = Q one has for all m ≥ 4 that
Sm(Q) = Q≥0 = S4(Q), we have rk∃

Q(Sm(Q)) ≤ 4 for all m.

In fact, one has

Q≥0 = S3(Q) ∪ 2S3(Q),

so even rk∃
Q(Q≥0) ≤ 3. Question: Do we have rk∃

Q(Q≥0) = 3?

Question: Is there any subset D of Q with 2 < rk∃
Q(D) <∞?

If rk∃
Q(Z) <∞, then there exists N ∈ N such that rk∃

Q(D) ≤ N
for all existentially definable D ⊆ Q.

Determining rk∃
K (D) is in general hard.
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Existential rank of formulas

Consider for each m ∈ N the following formulas in the language of
rings:

σm(X ) = ∃Y1, . . . ,Ym(X
.

=
m∑
i=1

Y 2
i )

πm(X1, . . . ,Xm) = ∃Y1, . . . ,Ym(
m∧
i=1

Xi
.

= Y 2
i )

Can σm(X ) or πm(X1, . . . ,Xn) be written with less quantifiers
“independently of the underlying field”? I.e. can Sm(K ) and (�K )m

be defined uniformly in the class of fields with less than m quantifiers?
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Existential rank of formulas
Definition

Let L be a first-order language, ϕ an L-formula, T an L-theory. The L-existential rank
of ϕ modulo T , denoted by rk∃

L,T (ϕ) is the smallest integer m such that T |= ϕ↔ ψ for

some existential L-formula ψ with m quantifiers. We set rk∃
L,T (ϕ) =∞ if no such

integer m exists.

Remarks:

We recover from this the existential rank of a subset D = ϕ(K )
of some field K , namely rk∃

K (D) = rk∃
Lring(K),ThLring(K)(K)(ϕ).

For L-formulas ϕ1, ϕ2 and an L-theory T one has

rk∃
L,T (ϕ1 ∧ ϕ2) ≤ rk∃

L,T (ϕ1) + rk∃
L,T (ϕ2)

rk∃
L,T (ϕ1 ∨ ϕ2) ≤ max{rk∃

L,T (ϕ1), rk∃
L,T (ϕ2)}
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Existential rank of formulas

In the language of rings and with

σm(X ) = ∃Y1, . . . ,Ym(X
.

=
m∑
i=1

Y 2
i )

πm(X1, . . . ,Xm) = ∃Y1, . . . ,Ym(
m∧
i=1

Xi
.

= Y 2
i )

rk∃
Lring,T

if T = theory of
fields

if T = theory of
fields with 2 6= 0

σm(X )

m m

πm(X1, . . . ,Xm)

m 1
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Outline

1. Introduction

2. Understanding existential rank of formulae: a model-theoretic
framework

3. Outlook: lower bounds for existentially definable sets, existential
rank of a field
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Sums of m squares

Assume that

σm(X ) = ∃Y1, . . . ,Ym(X
.

=
m∑
i=1

Y 2
i )

is equivalent to an existential formula ψ(X ) with m − 1 existential
quantifiers for all fields in which 2 6= 0. We want to reach a
contradiction.

Consider K = R(T ), L = K (U1, . . . ,Um−1)(
√

T −
∑m−1

i=1 U2
i ); set

Um =
√

T −
∑m−1

i=1 U2
i ∈ L. We see that:

L |= σm(T ) (witness (U1, . . . ,Um)),

L |= ψ(T )
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Sums of m squares

There exists an intermediate field K ′ of L/K generated by m− 1
elements over K such that K ′ |= ψ(T ).

K ′ |= σm(T ), i.e. T is a sum of m squares in K ′.

K ′ has transcendence degree at most m − 2 over K .

But by results on the essential dimension of quadrics (Karpenko,
Merkurjev [KM03]), T is not a sum of m squares in any
intermediate field of L/K of transcendence degree less than
m − 1 over K . Contradiction.

We conclude that rk∃
Lring,T

(σm) = m where T is the theory of fields

(or even the theory of fields of characteristic 0).

Note: we did not show that there exists a field K with
rk∃

K (Sm(K )) = m.
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Tuples of m squares

For m ∈ N we had

πm(X1, . . . ,Xm) = ∃Y1, . . . ,Ym(
m∧
i=1

Xi
.

= Y 2
i ).

By similar arguments as before, this time arguing via the
extension F2(

√
T1, . . . ,

√
Tm)/F2(T1, . . . ,Tm), one sees that

rk∃
Lring,T

(πm) = m where T is the theory of fields in which 2 = 0.

However, for fields in which 2 6= 0 this argument fails: for any
such field K and a1, . . . , am ∈ K , the extension
K (
√
a1, . . . ,

√
an)/K is a separable finite extension and thus

generated by one element. (Primitive Element Theorem)
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Tuples of m squares
Let T be the theory of fields with 2 6= 0.

Let C be the set of quantifier-free Lring-formulas
ψ(Y ,X1, . . . ,Xm) for which

T |= ∃Yψ(Y ,X1, . . . ,Xm)→ πm(X1, . . . ,Xm).

Claim: For any K |= T and a1, . . . , am ∈ �K , there is some
ψ ∈ C such that K |= ∃Yψ(Y , a1, . . . , am).

Let K0 be the smallest subfield of K containing a1, . . . , am, set
L = K0(

√
a1, . . . ,

√
am), and let b be a primitive element of L/K0.

Denoting by D the quantifier-free Lring(X1, . . . ,Xm,Y )-theory of
L (where we interpret Xi as ai and Y as b), we get
D ∪ T |= πm(X1, . . . ,Xm).
By the Compactness Theorem, there exist ψ1, . . . , ψr ∈ D such
that

T |= ∃Y (
r∧

i=1

ψi )→ πm(X1, . . . ,Xm),

proving the claim.
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T .
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Tuples of m squares

An example of an existential formula with one quantifier equivalent
to π2 is given by

∃Y ((X1 − X2)2Y 4 − 2(X1 + X2)Y 2 + 1
.

= 0 ∨ (X1
.

= 0 ∧ X2
.

= 0)).

Explicit techniques to construct existential formulas equivalent to a
given formula and with the optimal number of quantifiers, will be
discussed in upcoming work with Karim Becher.
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Quantitative preservation theorem

Proposition

Let ϕ be an Lring-formula, m ∈ N, T the theory of fields. The following are equivalent:

1. rk∃
Lring,T

(ϕ) ≤ m.

2. For every field K and every x ∈ ϕ(K) there is a subfield K ′ of K generated by x
and m further elements such that K ′ |= ϕ(x).

This principle generalises to arbitrary languages and theories:

Proposition

Let L be a first-order language, ϕ an L-formula, T an L-theory, m ∈ N. The following
are equivalent:

1. rk∃
L,T (ϕ) ≤ m.

2. For every K |= T and every x ∈ ϕ(K) there is an L-substructure A of K generated
by x and m further elements such that L |= ϕ(ρ(x)) for every L-embedding
ρ : A→ L where L |= T .
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Another application

Corollary

Let T be the theory of fields of characteristic 0. For L-formulas ϕ1, ϕ2 with
rk∃

Lring,T
(ϕ1), rk∃

Lring,T
(ϕ2) ≥ 1 one has

rk∃
Lring,T

(ϕ1 ∧ ϕ2) ≤ rk∃
Lring,T

(ϕ1) + rk∃
Lring,T

(ϕ2)− 1.

Proof idea.

If L1/K and L2/K are field extensions in characteristic 0 which are not purely
transcendental and which are generated by m1 respectively m2 elements, then any
compositum L1L2 is generated by m1 + m2 − 1 elements over K . Now invoke the previous
proposition.
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Outlook: lower bounds for existentially
definable sets

(Pasten [Pas21], building on Kollár [Kol08]) In K = C(T ), for
every m ∈ N+ the set

Dm = {a0 + a1T + . . .+ amT
m | a0, . . . , am ∈ C}

has rk∃
K (Dm) = m.

There exists a field K such that for all m ∈ N, rk∃
K (Sm(K )) = m.

If K is a large imperfect field of characteristic 2 (e.g.
K = F2((T ))), then rk∃

K ((�K )m) = m for all m ∈ N.

On the other hand, if K is a finitely generated field (e.g.
K = F2(T )), then rk∃

K ((�K )m) = 1 for all m ∈ N+.
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Outlook: existential rank of a field
For a field K , we define

rk∃,1(K ) = sup{rk∃(D) | D ⊆ K existentially definable in K}.

If K is finite or algebraically closed, then rk∃,1(K ) = 0.

If K is real closed, p-adically closed, or perfect
pseudo-algebraically closed, then rk∃,1(K ) ≤ 1.

If K is large and imperfect (e.g. K = Fp((T ))) then
rk∃,1(K ) =∞.

If K is a global field, then rk∃,1(K ) ≥ 2. If rk∃,1(Q) <∞, then Z
is not existentially definable in Q.

Question: Is there a field K with rk∃,1(K ) 6∈ {0, 1,∞}?

20/21



Outlook: existential rank of a field
For a field K , we define

rk∃,1(K ) = sup{rk∃(D) | D ⊆ K existentially definable in K}.

If K is finite or algebraically closed, then rk∃,1(K ) = 0.

If K is real closed, p-adically closed, or perfect
pseudo-algebraically closed, then rk∃,1(K ) ≤ 1.

If K is large and imperfect (e.g. K = Fp((T ))) then
rk∃,1(K ) =∞.

If K is a global field, then rk∃,1(K ) ≥ 2. If rk∃,1(Q) <∞, then Z
is not existentially definable in Q.

Question: Is there a field K with rk∃,1(K ) 6∈ {0, 1,∞}?

20/21



Outlook: existential rank of a field
For a field K , we define

rk∃,1(K ) = sup{rk∃(D) | D ⊆ K existentially definable in K}.

If K is finite or algebraically closed, then rk∃,1(K ) = 0.

If K is real closed, p-adically closed, or perfect
pseudo-algebraically closed, then rk∃,1(K ) ≤ 1.

If K is large and imperfect (e.g. K = Fp((T ))) then
rk∃,1(K ) =∞.

If K is a global field, then rk∃,1(K ) ≥ 2. If rk∃,1(Q) <∞, then Z
is not existentially definable in Q.

Question: Is there a field K with rk∃,1(K ) 6∈ {0, 1,∞}?

20/21



Outlook: existential rank of a field
For a field K , we define

rk∃,1(K ) = sup{rk∃(D) | D ⊆ K existentially definable in K}.

If K is finite or algebraically closed, then rk∃,1(K ) = 0.

If K is real closed, p-adically closed, or perfect
pseudo-algebraically closed, then rk∃,1(K ) ≤ 1.

If K is large and imperfect (e.g. K = Fp((T ))) then
rk∃,1(K ) =∞.

If K is a global field, then rk∃,1(K ) ≥ 2. If rk∃,1(Q) <∞, then Z
is not existentially definable in Q.

Question: Is there a field K with rk∃,1(K ) 6∈ {0, 1,∞}?

20/21



Outlook: existential rank of a field
For a field K , we define

rk∃,1(K ) = sup{rk∃(D) | D ⊆ K existentially definable in K}.

If K is finite or algebraically closed, then rk∃,1(K ) = 0.

If K is real closed, p-adically closed, or perfect
pseudo-algebraically closed, then rk∃,1(K ) ≤ 1.

If K is large and imperfect (e.g. K = Fp((T ))) then
rk∃,1(K ) =∞.

If K is a global field, then rk∃,1(K ) ≥ 2. If rk∃,1(Q) <∞, then Z
is not existentially definable in Q.

Question: Is there a field K with rk∃,1(K ) 6∈ {0, 1,∞}?

20/21



References

[DDF21] Nicolas Daans, Philip Dittmann, and Arno Fehm. “Existential
rank and essential dimension of diophantine sets”. available as
arXiv:2102.06941. 2021.

[KM03] Nikita Karpenko and Alexander Merkurjev. “Essential dimension
of quadrics”. In: Inventiones Mathematicae 153 (2003),
pp. 361–372.

[Kol08] János Kollár. “Diophantine subsets of function fields of curves”.
In: Algebra & Number Theory 2.3 (2008), pp. 299–311.

[Pas21] Hector Pasten. “Notes on the DPRM property for listable
structures”. available as arXiv:2012.14054. Jan. 2021.

Nicolas Daans
E-mail: nicolas.daans@uantwerpen.be

Office: M.G.223

21/21

nicolas.daans@uantwerpen.be

	Introduction
	Existentially definable subsets
	How many quantifiers?
	Existential rank of formulas
	Outline

	Model-theoretic framework
	Sums of m squares
	Tuples of m squares
	Quantitative preservation theorem

	Applications & Outlook
	Another application
	Outlook: lower bounds for existentially definable sets
	Outlook: existential rank of a field

	References

