

How many quantifiers are needed to existentially define a given subset of a field?

Based on joint work with Arno Fehm & Philip Dittmann

Nicolas Daans

18 June 2021

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$. D is called *existentially definable (in* $Kⁿ$) if $D = \varphi(K)$ for some existential formula φ in *n* free variables in the first-order language of rings with parameters from K.

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$. D is called *existentially definable (in* $Kⁿ$) if $D = \varphi(K)$ for some existential formula φ in *n* free variables in the first-order language of rings with parameters from K.

Equivalently,

 $D = \{ \underline{x} \in K^n \mid f_1(\underline{x}, \underline{Y}), \ldots, f_r(\underline{x}, \underline{Y}) \}$ have a common zero in $K^m \}$

for some $r, m \in \mathbb{N}$, $f_1, \ldots, f_r \in K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$.

Examples of existentially definable subsets of fields $(n = 1)$:

Finite and cofinite subsets (quantifier-freely definable).

Examples of existentially definable subsets of fields $(n = 1)$:

- Finite and cofinite subsets (quantifier-freely definable).
- \blacksquare The set of squares of the field K :

$$
\Box K = \{x \in K \mid \exists y \in K : x = y^2\}.
$$

Examples of existentially definable subsets of fields $(n = 1)$:

- Finite and cofinite subsets (quantifier-freely definable).
- \blacksquare The set of squares of the field K :

$$
\Box K = \{x \in K \mid \exists y \in K : x = y^2\}.
$$

For $K = \mathbb{Q}$, the set of non-negative rationals:

 $\mathbb{Q}_{\geq 0} = \{x \in \mathbb{Q} \mid \exists y_1, \ldots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2\}.$

Examples of existentially definable subsets of fields $(n = 1)$:

- Finite and cofinite subsets (quantifier-freely definable).
- \blacksquare The set of squares of the field K :

$$
\Box K = \{x \in K \mid \exists y \in K : x = y^2\}.
$$

For $K = \mathbb{Q}$, the set of non-negative rationals:

$$
\mathbb{Q}_{\geq 0} = \{x \in \mathbb{Q} \mid \exists y_1, \ldots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2\}.
$$

 \blacksquare The set of sums of m squares of a field, i.e.

$$
S_m(K) = \left\{ x \in K \middle| \exists y_1, \ldots, y_m \in K : x = \sum_{i=1}^m y_i^2 \right\}.
$$

In general, to decide whether a given subset of a field K (or more generally, a subset of $Kⁿ$) is existentially definable, is hard.

- In general, to decide whether a given subset of a field K (or more generally, a subset of $Kⁿ$) is existentially definable, is hard.
- If K has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.

- In general, to decide whether a given subset of a field K (or more generally, a subset of $Kⁿ$) is existentially definable, is hard.
- If K has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.
- **e.g. Question:** Is \mathbb{Z} an existentially definable subset of \mathbb{Q} ?

We can ask: if a subset D is existentially definable, what is the "simplest" description which can be given to it? There are different ways we could attach a number to an existentially definable set to express its simplicity or complexity. We will use the following:

Definition

Let K be a field, $n \in \mathbb{N}$, $D \subseteq K^n$. The *existential rank of D (in Kⁿ)* is defined to be the smallest natural number m such that $D = \varphi(K)$ for some existential $\mathcal{L}_{\text{ring}}(K)$ -formula with m quantifiers. We denote it by $\text{rk}_{K}^{\exists}(D)$. If D is not existentially definable, we set $\operatorname{rk}^{\exists}_{K}(D) = \infty.$

(\mathcal{L}_{ring} is the language of rings, $\mathcal{L}_{ring}(K)$ the language of rings with parameters from K)

For any field K, $\text{rk}_K^{\exists}(S_m(K)) \leq m$.

- For any field K, $\text{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m > 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\geq 0} = S_4(\mathbb{Q})$, we have $\text{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \leq 4$ for all m.

- For any field K, $\text{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m > 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\geq 0} = S_4(\mathbb{Q})$, we have $\text{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \leq 4$ for all m.
- \blacksquare In fact, one has

$$
\mathbb{Q}_{\geq 0} = \mathcal{S}_3(\mathbb{Q}) \cup 2\mathcal{S}_3(\mathbb{Q}),
$$

so even $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})\leq$ 3. Question: Do we have $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})=$ 3?

- For any field K, $\text{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m > 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\geq 0} = S_4(\mathbb{Q})$, we have $\text{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \leq 4$ for all m.
- \blacksquare In fact, one has

$$
\mathbb{Q}_{\geq 0} = \mathcal{S}_3(\mathbb{Q}) \cup 2\mathcal{S}_3(\mathbb{Q}),
$$

so even $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})\leq$ 3. Question: Do we have $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})=$ 3? **Question**: Is there any subset D of $\mathbb Q$ with $2 < \text{rk}_{\mathbb Q}^{\mathbb R}(D) < \infty$?

- For any field K, $\text{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m > 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\geq 0} = S_4(\mathbb{Q})$, we have $\text{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \leq 4$ for all m.
- In fact, one has

$$
\mathbb{Q}_{\geq 0} = \mathcal{S}_3(\mathbb{Q}) \cup 2\mathcal{S}_3(\mathbb{Q}),
$$

so even $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})\leq$ 3. Question: Do we have $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})=$ 3?

- **Question**: Is there any subset D of $\mathbb Q$ with $2 < \text{rk}_{\mathbb Q}^{\mathbb R}(D) < \infty$?
- If $\text{rk}_{\mathbb{O}}^{\exists}(\mathbb{Z}) < \infty$, then there exists $N \in \mathbb{N}$ such that $\text{rk}_{\mathbb{O}}^{\exists}(D) \leq N$ for all existentially definable $D \subseteq \mathbb{Q}$.

- For any field K, $\text{rk}_K^{\exists}(S_m(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m > 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\geq 0} = S_4(\mathbb{Q})$, we have $\text{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \leq 4$ for all m.
- In fact, one has

$$
\mathbb{Q}_{\geq 0} = \mathcal{S}_3(\mathbb{Q}) \cup 2\mathcal{S}_3(\mathbb{Q}),
$$

so even $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})\leq$ 3. Question: Do we have $\mathrm{rk}_\mathbb{O}^\mathbb{I}(\mathbb{Q}_{\geq 0})=$ 3?

- **Question**: Is there any subset D of $\mathbb Q$ with $2 < \text{rk}_{\mathbb Q}^{\mathbb R}(D) < \infty$?
- If $\text{rk}_{\mathbb{O}}^{\exists}(\mathbb{Z}) < \infty$, then there exists $N \in \mathbb{N}$ such that $\text{rk}_{\mathbb{O}}^{\exists}(D) \leq N$ for all existentially definable $D \subseteq \mathbb{Q}$.
- Determining $\text{rk}_K^{\exists}(D)$ is in general hard.

Consider for each $m \in \mathbb{N}$ the following formulas in the language of rings:

$$
\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

$$
\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)
$$

Can $\sigma_m(X)$ or $\pi_m(X_1,\ldots,X_n)$ be written with less quantifiers "independently of the underlying field"? I.e. can $S_m(K)$ and $(\Box K)^m$ be defined *uniformly in the class of fields* with less than m quantifiers?

Definition

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, $\mathcal T$ an $\mathcal L$ -theory. The $\mathcal L$ -existential rank of φ modulo T , denoted by $\mathrm{rk}_{\mathcal{L},T}^{\exists}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential $\mathcal L$ -formula ψ with m quantifiers. We set $\mathrm{rk}_{\mathcal L,\mathcal T}^{\exists}(\varphi)=\infty$ if no such integer m exists.

Remarks:

We recover from this the existential rank of a subset $D = \varphi(K)$ of some field K , namely $\mathrm{rk}_K^\exists(D) = \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}}(K), \mathsf{Th}_{\mathcal{L}_{\mathrm{ring}}(K)}(\mathcal{K})}^{\exists}(\varphi).$

Definition

Let $\mathcal L$ be a first-order language, φ an $\mathcal L$ -formula, $\mathcal T$ an $\mathcal L$ -theory. The $\mathcal L$ -existential rank of φ modulo T , denoted by $\mathrm{rk}_{\mathcal{L},T}^{\exists}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential $\mathcal L$ -formula ψ with m quantifiers. We set $\mathrm{rk}_{\mathcal L,\mathcal T}^{\exists}(\varphi)=\infty$ if no such integer m exists.

Remarks:

- We recover from this the existential rank of a subset $D = \varphi(K)$ of some field K , namely $\mathrm{rk}_K^\exists(D) = \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}}(K), \mathsf{Th}_{\mathcal{L}_{\mathrm{ring}}(K)}(\mathcal{K})}^{\exists}(\varphi).$
- For L-formulas φ_1, φ_2 and an L-theory T one has

$$
\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_1 \wedge \varphi_2) \leq \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_1) + \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_2)
$$

$$
\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_1 \vee \varphi_2) \leq \max\{\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_1),\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_2)\}
$$

$$
\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

$$
\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m \left(\bigwedge_{i=1}^m X_i \doteq Y_i^2\right)
$$

$$
\text{rk}_{\mathcal{L}_{ring}, \mathcal{T}}^{\exists} \qquad \text{if } \mathcal{T} = \text{theory of fields}
$$

$$
\sigma_m(X)
$$

$$
\pi_m(X_1, \dots, X_m)
$$

$$
\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

$$
\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)
$$

$$
\begin{array}{c|c}\n\text{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists} & \text{if } \mathcal{T} = \text{theory of} \\
\hline\n\text{fields} \\
\hline\n\sigma_m(X) & m \\
\hline\n\pi_m(X_1, \dots, X_m) & m\n\end{array}
$$

$$
\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$
\n
$$
\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m \left(\bigwedge_{i=1}^m X_i \doteq Y_i^2\right)
$$
\n
$$
\text{rk}_{\mathcal{L}_{ring}, \mathcal{T}}^{\exists}
$$
\nif $\mathcal{T} = \text{theory of fields}$ if $\mathcal{T} = \text{theory of fields with } 2 \neq 0$ \n
$$
\sigma_m(X)
$$
\n
$$
m
$$
\n
$$
\pi_m(X_1, \dots, X_m)
$$
\n
$$
m
$$

$$
\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$
\n
$$
\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m \left(\bigwedge_{i=1}^m X_i \doteq Y_i^2\right)
$$
\n
$$
\text{rk}_{\mathcal{L}_{ring}, \mathcal{T}}^{\exists}
$$
\nif $\mathcal{T} = \text{theory of fields}$ if $\mathcal{T} = \text{theory of fields with } 2 \neq 0$ \n
$$
\sigma_m(X)
$$
\n
$$
m
$$
\n
$$
\pi_m(X_1, \dots, X_m)
$$
\n
$$
m
$$
\n
$$
1
$$

[Outline](#page-24-0)

- 1. Introduction
- 2. Understanding existential rank of formulae: a model-theoretic framework
- 3. Outlook: lower bounds for existentially definable sets, existential rank of a field

Assume that

$$
\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

is equivalent to an existential formula $\psi(X)$ with $m-1$ existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Assume that

$$
\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

is equivalent to an existential formula $\psi(X)$ with $m-1$ existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Consider $K=\mathbb{R}(\mathcal{T})$, $L=K(U_1,\ldots, U_{m-1})(\sqrt{\mathcal{T}-\sum_{i=1}^{m-1}U_i^2})$; set $U_m = \sqrt{\mathcal{T} - \sum_{i=1}^{m-1} U_i^2} \in L$. We see that:

Assume that

$$
\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

is equivalent to an existential formula $\psi(X)$ with $m-1$ existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Consider
$$
K = \mathbb{R}(T)
$$
, $L = K(U_1, ..., U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set
\n $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We see that:
\n $\blacksquare L \models \sigma_m(T)$ (witness $(U_1, ..., U_m)$),

Assume that

$$
\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)
$$

is equivalent to an existential formula $\psi(X)$ with $m-1$ existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Consider
$$
K = \mathbb{R}(T)
$$
, $L = K(U_1, ..., U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set
\n $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We see that:
\n $\blacksquare L \models \sigma_m(T)$ (witness $(U_1, ..., U_m)$),
\n $\blacksquare L \models \psi(T)$

There exists an intermediate field K' of L/K generated by $m-1$ elements over K such that $K' \models \psi(T)$.

- There exists an intermediate field K' of L/K generated by $m-1$ elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.

- There exists an intermediate field K' of L/K generated by $m-1$ elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most $m 2$ over K.

- There exists an intermediate field K' of L/K generated by $m-1$ elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most $m 2$ over K.
- \blacksquare But by results on the essential dimension of quadrics (Karpenko, Merkurjev [\[KM03\]](#page-57-0)), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than $m - 1$ over K. Contradiction.

- There exists an intermediate field K' of L/K generated by $m-1$ elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most $m 2$ over K.
- \blacksquare But by results on the essential dimension of quadrics (Karpenko, Merkurjev [\[KM03\]](#page-57-0)), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than $m - 1$ over K. Contradiction.

We conclude that $\mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\sigma_m)=m$ where \mathcal{T} is the theory of fields (or even the theory of fields of characteristic 0).

- There exists an intermediate field K' of L/K generated by $m-1$ elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most $m 2$ over K.
- \blacksquare But by results on the essential dimension of quadrics (Karpenko, Merkurjev [\[KM03\]](#page-57-0)), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than $m - 1$ over K. Contradiction.

We conclude that $\mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\sigma_m)=m$ where \mathcal{T} is the theory of fields (or even the theory of fields of characteristic 0).

Note: we did **not** show that there exists a field K with $\operatorname{rk}^{\exists}_{\mathcal{K}}(S_m(\mathcal{K})) = m.$

For $m \in \mathbb{N}$ we had

$$
\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\stackrel{\cdot}{=} Y_i^2).
$$

By similar arguments as before, this time arguing via the By similar arguments as before, this time argumg via the extension $\mathbb{F}_2(\sqrt{T_1}, \ldots, \sqrt{T_m})/\mathbb{F}_2(T_1, \ldots, T_m)$, one sees that $\mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\pi_m)=m$ where \mathcal{T} is the theory of fields in which $2=0.$

For $m \in \mathbb{N}$ we had

$$
\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\stackrel{\cdot}{=} Y_i^2).
$$

- By similar arguments as before, this time arguing via the By similar arguments as before, this time argumg via the extension $\mathbb{F}_2(\sqrt{T_1}, \ldots, \sqrt{T_m})/\mathbb{F}_2(T_1, \ldots, T_m)$, one sees that $\mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\pi_m)=m$ where \mathcal{T} is the theory of fields in which $2=0.$ However, for fields in which $2 \neq 0$ this argument fails: for any such field K and $a_1, \ldots, a_m \in K$, the extension $K(\sqrt{a_1}, \ldots, \sqrt{a_n})/K$ is a separable finite extension and thus
	- generated by one element. (Primitive Element Theorem)

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

 $T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

$$
\mathcal{T} \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).
$$

■ Claim: For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in \mathcal{C}$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

$$
\mathcal{T} \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).
$$

- Claim: For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in \mathcal{C}$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
	- Let K_0 be the smallest subfield of K containing a_1, \ldots, a_m , set Let N_0 be the smallest sublicit of N containing a_1, \ldots, a_m , set $L = K_0(\sqrt{a_1}, \ldots, \sqrt{a_m})$, and let b be a primitive element of L/K_0 .

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

$$
\mathcal{T} \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).
$$

- Claim: For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in \mathcal{C}$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
	- Let K_0 be the smallest subfield of K containing a_1, \ldots, a_m , set Let N_0 be the smallest sublicit of N containing a_1, \ldots, a_m , set $L = K_0(\sqrt{a_1}, \ldots, \sqrt{a_m})$, and let b be a primitive element of L/K_0 .
	- **Denoting by D the quantifier-free** $\mathcal{L}_{ring}(X_1, \ldots, X_m, Y)$ **-theory of** L (where we interpret X_i as a_i and Y as b), we get $D \cup T \models \pi_m(X_1, \ldots, X_m).$

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

$$
\mathcal{T} \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).
$$

- Claim: For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in \mathcal{C}$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
	- Let K_0 be the smallest subfield of K containing a_1, \ldots, a_m , set Let N_0 be the smallest sublicit of N containing a_1, \ldots, a_m , set $L = K_0(\sqrt{a_1}, \ldots, \sqrt{a_m})$, and let b be a primitive element of L/K_0 .
	- **Denoting by D the quantifier-free** $\mathcal{L}_{ring}(X_1, \ldots, X_m, Y)$ **-theory of** L (where we interpret X_i as a_i and Y as b), we get $D \cup T \models \pi_m(X_1, \ldots, X_m).$
	- By the Compactness Theorem, there exist $\psi_1, \ldots, \psi_r \in D$ such that

$$
T \models \exists Y(\bigwedge_{i=1}^r \psi_i) \rightarrow \pi_m(X_1,\ldots,X_m),
$$

Iniversity of Antwerp proving the claim.

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

 $T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$

■ For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in \mathcal{C}$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.

Let T be the theory of fields with $2 \neq 0$.

Let C be the set of quantifier-free $\mathcal{L}_{\text{ring}}$ -formulas $\psi(Y, X_1, \ldots, X_m)$ for which

$$
\mathcal{T} \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).
$$

- **■** For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in \mathcal{C}$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
- By the Compactness Theorem, there exist $\varphi_1, \ldots, \varphi_s \in \mathcal{C}$ such that $\mathcal{T} \models \exists Y (\bigvee_{i=1}^s \varphi_i) \leftrightarrow \pi_m$. We conclude that π_m is indeed equivalent to an existential formula with one quantifier modulo T.

An example of an existential formula with one quantifier equivalent to π_2 is given by

 $\exists Y((X_1 - X_2)^2 Y^4 - 2(X_1 + X_2)Y^2 + 1 \doteq 0 \vee (X_1 \doteq 0 \wedge X_2 \doteq 0)).$

Explicit techniques to construct existential formulas equivalent to a given formula and with the optimal number of quantifiers, will be discussed in upcoming work with Karim Becher.

[Quantitative preservation theorem](#page-45-0)

Proposition

Let φ be an \mathcal{L}_{ring} -formula, $m \in \mathbb{N}$, T the theory of fields. The following are equivalent:

- 1. $\operatorname{rk}^{\exists}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}(\varphi) \leq m$.
- 2. For every field K and every $\underline{x} \in \varphi(K)$ there is a subfield K' of K generated by x and m further elements such that $K' \models \varphi(\underline{x})$.

[Quantitative preservation theorem](#page-45-0)

Proposition

Let φ be an \mathcal{L}_{ring} -formula, $m \in \mathbb{N}$, T the theory of fields. The following are equivalent:

- 1. $\operatorname{rk}^{\exists}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}(\varphi) \leq m$.
- 2. For every field K and every $x \in \varphi(K)$ there is a subfield K' of K generated by x and m further elements such that $K' \models \varphi(\underline{x})$.

This principle generalises to arbitrary languages and theories:

Proposition

Let L be a first-order language, φ an L-formula, T an L-theory, $m \in \mathbb{N}$. The following are equivalent:

- 1. $\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi)\leq m$.
- 2. For every $K \models T$ and every $x \in \varphi(K)$ there is an \mathcal{L} -substructure A of K generated by x and m further elements such that $L \models \varphi(\rho(\underline{x}))$ for every *L*-embedding $\rho: A \to L$ where $L \models T$.

[Another application](#page-47-0)

Corollary

Let T be the theory of fields of characteristic 0. For L-formulas φ_1, φ_2 with $\operatorname{rk}^{\exists}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}(\varphi_1),\operatorname{rk}^{\exists}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}(\varphi_2)\geq 1$ one has

 $\mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\varphi_1 \wedge \varphi_2) \leq \mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\varphi_1) + \mathrm{rk}_{\mathcal{L}_{\text{ring}},\mathcal{T}}^{\exists}(\varphi_2) - 1.$

Proof idea.

If L_1/K and L_2/K are field extensions in characteristic 0 which are not purely transcendental and which are generated by m_1 respectively m_2 elements, then any compositum L_1L_2 is generated by $m_1 + m_2 - 1$ elements over K. Now invoke the previous proposition.

 \blacksquare (Pasten [\[Pas21\]](#page-57-1), building on Kollár [\[Kol08\]](#page-57-2)) In $K = \mathbb{C}(T)$, for every $m \in \mathbb{N}^+$ the set

 $D_m = \{a_0 + a_1 T + \ldots + a_m T^m \mid a_0, \ldots, a_m \in \mathbb{C}\}\$

has $\text{rk}_{K}^{\exists}(D_{m})=m$.

 \blacksquare (Pasten [\[Pas21\]](#page-57-1), building on Kollár [\[Kol08\]](#page-57-2)) In $K = \mathbb{C}(T)$, for every $m \in \mathbb{N}^+$ the set

$$
D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}
$$

has $\text{rk}_{K}^{\exists}(D_{m})=m$.

There exists a field K such that for all $m \in \mathbb{N}$, $\text{rk}_{K}^{\exists}(S_{m}(K)) = m$.

 \blacksquare (Pasten [\[Pas21\]](#page-57-1), building on Kollár [\[Kol08\]](#page-57-2)) In $K = \mathbb{C}(\mathcal{T})$, for every $m \in \mathbb{N}^+$ the set

$$
D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}
$$

has $\text{rk}_{K}^{\exists}(D_{m})=m$.

- There exists a field K such that for all $m \in \mathbb{N}$, $\text{rk}_{K}^{\exists}(S_{m}(K)) = m$.
- If K is a large imperfect field of characteristic 2 (e.g. $K = \mathbb{F}_2((T))$), then $\mathrm{rk}_{K}^{\exists}((\Box K)^m) = m$ for all $m \in \mathbb{N}$.

 \blacksquare (Pasten [\[Pas21\]](#page-57-1), building on Kollár [\[Kol08\]](#page-57-2)) In $K = \mathbb{C}(\mathcal{T})$, for every $m \in \mathbb{N}^+$ the set

$$
D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}
$$

has $\text{rk}_{K}^{\exists}(D_{m})=m$.

- There exists a field K such that for all $m \in \mathbb{N}$, $\text{rk}_{K}^{\exists}(S_{m}(K)) = m$.
- If K is a large imperfect field of characteristic 2 (e.g. $K = \mathbb{F}_2((T))$), then $\mathrm{rk}_{K}^{\exists}((\Box K)^m) = m$ for all $m \in \mathbb{N}$.
- \blacksquare On the other hand, if K is a finitely generated field (e.g. $K = \mathbb{F}_2(\mathcal{T})$), then $\mathrm{rk}_{K}^{\exists}((\Box K)^m) = 1$ for all $m \in \mathbb{N}^+$.

For a field K , we define

 $\operatorname{rk}^{\exists,1}(\mathcal{K})=\sup\{\operatorname{rk}^\exists(D)\mid D\subseteq\mathcal{K} \text{ existentially definable in } \mathcal{K}\}.$

If K is finite or algebraically closed, then $\text{rk}^{\exists,1}(K)=0.$

For a field K , we define

 $\operatorname{rk}^{\exists,1}(\mathcal{K})=\sup\{\operatorname{rk}^\exists(D)\mid D\subseteq\mathcal{K} \text{ existentially definable in } \mathcal{K}\}.$

If K is finite or algebraically closed, then $\text{rk}^{\exists,1}(K)=0.$ If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then $\text{rk}^{\exists,1}(K) \leq 1$.

For a field K , we define

 $\operatorname{rk}^{\exists,1}(\mathcal{K})=\sup\{\operatorname{rk}^\exists(D)\mid D\subseteq\mathcal{K} \text{ existentially definable in } \mathcal{K}\}.$

- If K is finite or algebraically closed, then $\text{rk}^{\exists,1}(K)=0.$
- If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then $\text{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\scriptscriptstyle\exists,1}(\mathcal{K})=\infty.$

For a field K , we define

 $\operatorname{rk}^{\exists,1}(\mathcal{K})=\sup\{\operatorname{rk}^\exists(D)\mid D\subseteq\mathcal{K} \text{ existentially definable in } \mathcal{K}\}.$

- If K is finite or algebraically closed, then $\text{rk}^{\exists,1}(K)=0.$
- If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then $\text{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\scriptscriptstyle\exists,1}(\mathcal{K})=\infty.$
- If K is a global field, then $\mathrm{rk}^{\exists,1}(K) \geq 2$. If $\mathrm{rk}^{\exists,1}(\mathbb{Q}) < \infty$, then $\mathbb Z$ is not existentially definable in Q.

For a field K , we define

 $\operatorname{rk}^{\exists,1}(\mathcal{K})=\sup\{\operatorname{rk}^\exists(D)\mid D\subseteq\mathcal{K} \text{ existentially definable in } \mathcal{K}\}.$

- If K is finite or algebraically closed, then $\text{rk}^{\exists,1}(K)=0.$
- If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then $\text{rk}^{\exists,1}(K) \leq 1$.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\scriptscriptstyle\exists,1}(\mathcal{K})=\infty.$
- If K is a global field, then $\mathrm{rk}^{\exists,1}(K) \geq 2$. If $\mathrm{rk}^{\exists,1}(\mathbb{Q}) < \infty$, then $\mathbb Z$ is not existentially definable in Q.
- **Question:** Is there a field K with $\text{rk}^{\exists,1}(K) \notin \{0,1,\infty\}$?

References

[DDF21] Nicolas Daans, Philip Dittmann, and Arno Fehm. "Existential rank and essential dimension of diophantine sets". available as arXiv:2102.06941. 2021.

- [KM03] Nikita Karpenko and Alexander Merkurjev. "Essential dimension of quadrics". In: Inventiones Mathematicae 153 (2003), pp. 361–372.
- [Kol08] János Kollár. "Diophantine subsets of function fields of curves". In: Algebra & Number Theory 2.3 (2008), pp. 299–311.
- [Pas21] Hector Pasten. "Notes on the DPRM property for listable structures". available as arXiv:2012.14054. Jan. 2021.

Nicolas Daans E-mail: <nicolas.daans@uantwerpen.be> Office: M.G.223

