

How many quantifiers are needed to existentially define a given subset of a field?

Based on joint work with Arno Fehm & Philip Dittmann

Nicolas Daans

18 June 2021

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$. D is called *existentially definable (in* K^n) if $D = \varphi(K)$ for some existential formula φ in n free variables in the first-order language of rings with parameters from K.

Let K be a field, $D \subseteq K^n$ for some $n \in \mathbb{N}$. D is called *existentially definable (in* K^n) if $D = \varphi(K)$ for some existential formula φ in n free variables in the first-order language of rings with parameters from K.

Equivalently,

 $D = \{ \underline{x} \in K^n \mid f_1(\underline{x}, \underline{Y}), \dots, f_r(\underline{x}, \underline{Y}) \text{ have a common zero in } K^m \}$

for some $r, m \in \mathbb{N}$, $f_1, \ldots, f_r \in K[X_1, \ldots, X_n, Y_1, \ldots, Y_m]$.

Examples of existentially definable subsets of fields (n = 1):

Finite and cofinite subsets (quantifier-freely definable).

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field *K*:

$$\Box K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field K:

$$\Box K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

• For $K = \mathbb{Q}$, the set of non-negative rationals:

 $\mathbb{Q}_{\geq 0} = \{ x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2 \}.$

Examples of existentially definable subsets of fields (n = 1):

- Finite and cofinite subsets (quantifier-freely definable).
- The set of squares of the field K:

$$\Box K = \{ x \in K \mid \exists y \in K : x = y^2 \}.$$

• For $K = \mathbb{Q}$, the set of non-negative rationals:

$$\mathbb{Q}_{\geq 0} = \{x \in \mathbb{Q} \mid \exists y_1, \dots, y_4 \in \mathbb{Q} : x = y_1^2 + y_2^2 + y_3^2 + y_4^2\}.$$

• The set of sums of *m* squares of a field, i.e.

$$S_m(K) = \left\{ x \in K \middle| \exists y_1, \dots, y_m \in K : x = \sum_{i=1}^m y_i^2 \right\}.$$

In general, to decide whether a given subset of a field K (or more generally, a subset of Kⁿ) is existentially definable, is hard.

- In general, to decide whether a given subset of a field K (or more generally, a subset of Kⁿ) is existentially definable, is hard.
- If *K* has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.

- In general, to decide whether a given subset of a field K (or more generally, a subset of Kⁿ) is existentially definable, is hard.
- If K has a "rich arithmetic" (e.g. number field), many subsets could be existentially definable.
- e.g. Question: Is \mathbb{Z} an existentially definable subset of \mathbb{Q} ?

We can ask: if a subset D is existentially definable, what is the "simplest" description which can be given to it? There are different ways we could attach a number to an existentially definable set to express its simplicity or complexity. We will use the following:

Definition

Let K be a field, $n \in \mathbb{N}$, $D \subseteq K^n$. The existential rank of D (in K^n) is defined to be the smallest natural number m such that $D = \varphi(K)$ for some existential $\mathcal{L}_{ring}(K)$ -formula with m quantifiers. We denote it by $rk_{K}^{\exists}(D)$. If D is not existentially definable, we set $rk_{K}^{\exists}(D) = \infty$.

 $(\mathcal{L}_{ring} \text{ is the language of rings, } \mathcal{L}_{ring}(K) \text{ the language of rings with parameters from } K)$

• For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.

- For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.

- For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$. Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?

- For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$. Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$? Question: Is there any subset D of \mathbb{Q} with $2 < \operatorname{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?

- For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$. Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?

- **Question**: Is there any subset D of \mathbb{Q} with $2 < \operatorname{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?
- If rk[∃]_Q(Z) < ∞, then there exists N ∈ N such that rk[∃]_Q(D) ≤ N for all existentially definable D ⊆ Q.

- For any field K, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) \leq m$.
- Since for $K = \mathbb{Q}$ one has for all $m \ge 4$ that $S_m(\mathbb{Q}) = \mathbb{Q}_{\ge 0} = S_4(\mathbb{Q})$, we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(S_m(\mathbb{Q})) \le 4$ for all m.
- In fact, one has

$$\mathbb{Q}_{\geq 0} = S_3(\mathbb{Q}) \cup 2S_3(\mathbb{Q}),$$

so even $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) \leq 3$. Question: Do we have $\operatorname{rk}_{\mathbb{Q}}^{\exists}(\mathbb{Q}_{\geq 0}) = 3$?

- **Question**: Is there any subset D of \mathbb{Q} with $2 < \operatorname{rk}_{\mathbb{Q}}^{\exists}(D) < \infty$?
- If rk[∃]_Q(Z) < ∞, then there exists N ∈ N such that rk[∃]_Q(D) ≤ N for all existentially definable D ⊆ Q.
- Determining $\operatorname{rk}_{K}^{\exists}(D)$ is in general hard.

Consider for each $m \in \mathbb{N}$ the following formulas in the language of rings:

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$
$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

Can $\sigma_m(X)$ or $\pi_m(X_1, \ldots, X_n)$ be written with less quantifiers "independently of the underlying field"? I.e. can $S_m(K)$ and $(\Box K)^m$ be defined *uniformly in the class of fields* with less than *m* quantifiers?

Definition

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory. The \mathcal{L} -existential rank of φ modulo T, denoted by $\operatorname{rk}_{\mathcal{L},T}^{\pm}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential \mathcal{L} -formula ψ with m quantifiers. We set $\operatorname{rk}_{\mathcal{L},T}^{\pm}(\varphi) = \infty$ if no such integer m exists.

Remarks:

• We recover from this the existential rank of a subset $D = \varphi(K)$ of some field K, namely $\operatorname{rk}_{K}^{\exists}(D) = \operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}(K),\operatorname{Th}_{\mathcal{L}_{\operatorname{ring}}(K)}(K)}(\varphi)$.

Definition

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory. The \mathcal{L} -existential rank of φ modulo T, denoted by $\operatorname{rk}_{\mathcal{L},T}^{\Xi}(\varphi)$ is the smallest integer m such that $T \models \varphi \leftrightarrow \psi$ for some existential \mathcal{L} -formula ψ with m quantifiers. We set $\operatorname{rk}_{\mathcal{L},T}^{\Xi}(\varphi) = \infty$ if no such integer m exists.

Remarks:

- We recover from this the existential rank of a subset D = φ(K) of some field K, namely rk[∃]_K(D) = rk[∃]_{Lring(K),Th_{Lring(K)}(κ)(φ).}
- For \mathcal{L} -formulas φ_1, φ_2 and an \mathcal{L} -theory \mathcal{T} one has

$$\begin{split} \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1} \wedge \varphi_{2}) &\leq \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}) + \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{2}) \\ \mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1} \vee \varphi_{2}) &\leq \max\{\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{1}),\mathrm{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi_{2})\} \end{split}$$

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$$\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists} \quad \text{if } \mathcal{T} = \text{theory of} \quad \text{fields}$$

$$\sigma_m(X)$$

$$\pi_m(X_1, \dots, X_m)$$

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$
$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$
$$\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}} \qquad \text{if } \mathcal{T} = \operatorname{theory of}$$

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$$\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists} \quad \text{if } T = \text{theory of fields} \quad \text{if } T = \text{theory of fields with } 2 \neq 0$$

$$\sigma_m(X) \quad m$$

$$\pi_m(X_1, \dots, X_m) \quad m$$

$$\sigma_m(X) = \exists Y_1, \dots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

$$\pi_m(X_1, \dots, X_m) = \exists Y_1, \dots, Y_m(\bigwedge_{i=1}^m X_i \doteq Y_i^2)$$

$$\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, \mathcal{T}}^{\exists} \quad \text{if } \mathcal{T} = \text{theory of} \quad \text{if } \mathcal{T} = \text{theory of} \quad \text{fields with } 2 \neq 0$$

$$\sigma_m(X) \quad m \quad m$$

$$\pi_m(X_1, \dots, X_m) \quad m \quad 1$$

Outline

- 1. Introduction
- 2. Understanding existential rank of formulae: a model-theoretic framework
- 3. Outlook: lower bounds for existentially definable sets, existential rank of a field

Assume that

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

is equivalent to an existential formula $\psi(X)$ with m-1 existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Assume that

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

is equivalent to an existential formula $\psi(X)$ with m-1 existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Consider $K = \mathbb{R}(T)$, $L = K(U_1, ..., U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We see that:

Assume that

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

is equivalent to an existential formula $\psi(X)$ with m-1 existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Consider
$$\mathcal{K} = \mathbb{R}(T)$$
, $L = \mathcal{K}(U_1, \dots, U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We see that:

•
$$L \models \sigma_m(T)$$
 (witness (U_1, \ldots, U_m)),

Assume that

$$\sigma_m(X) = \exists Y_1, \ldots, Y_m(X \doteq \sum_{i=1}^m Y_i^2)$$

is equivalent to an existential formula $\psi(X)$ with m-1 existential quantifiers for all fields in which $2 \neq 0$. We want to reach a contradiction.

Consider
$$\mathcal{K} = \mathbb{R}(T)$$
, $L = \mathcal{K}(U_1, \dots, U_{m-1})(\sqrt{T - \sum_{i=1}^{m-1} U_i^2})$; set $U_m = \sqrt{T - \sum_{i=1}^{m-1} U_i^2} \in L$. We see that:

•
$$L \models \sigma_m(T)$$
 (witness (U_1, \ldots, U_m)),
• $L \models \psi(T)$

There exists an intermediate field K' of L/K generated by m-1 elements over K such that $K' \models \psi(T)$.

- There exists an intermediate field K' of L/K generated by m-1 elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.

- There exists an intermediate field K' of L/K generated by m-1 elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most m 2 over K.

- There exists an intermediate field K' of L/K generated by m-1 elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most m 2 over K.
- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K. Contradiction.

- There exists an intermediate field K' of L/K generated by m-1 elements over K such that K' ⊨ ψ(T).
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most m 2 over K.
- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K. Contradiction.

We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\sigma_m) = m$ where \mathcal{T} is the theory of fields (or even the theory of fields of characteristic 0).

- There exists an intermediate field K' of L/K generated by m-1 elements over K such that $K' \models \psi(T)$.
- $K' \models \sigma_m(T)$, i.e. T is a sum of m squares in K'.
- K' has transcendence degree at most m 2 over K.
- But by results on the essential dimension of quadrics (Karpenko, Merkurjev [KM03]), T is not a sum of m squares in any intermediate field of L/K of transcendence degree less than m-1 over K. Contradiction.

We conclude that $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}},\mathcal{T}}^{\exists}(\sigma_m) = m$ where \mathcal{T} is the theory of fields (or even the theory of fields of characteristic 0).

Note: we did **not** show that there exists a field K with $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$.

Tuples of *m* **squares**

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\doteq Y_i^2).$$

By similar arguments as before, this time arguing via the extension $\mathbb{F}_2(\sqrt{T_1}, \dots, \sqrt{T_m})/\mathbb{F}_2(T_1, \dots, T_m)$, one sees that $\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}^{\exists}(\pi_m) = m$ where \mathcal{T} is the theory of fields in which 2 = 0.

For $m \in \mathbb{N}$ we had

$$\pi_m(X_1,\ldots,X_m)=\exists Y_1,\ldots,Y_m(\bigwedge_{i=1}^m X_i\doteq Y_i^2).$$

- By similar arguments as before, this time arguing via the extension F₂(√T₁,...,√T_m)/F₂(T₁,...,T_m), one sees that rk[∃]_{Lring,T}(π_m) = m where T is the theory of fields in which 2 = 0.
 However, for fields in which 2 ≠ 0 this argument fails: for any such field K and a₁,..., a_m ∈ K, the extension K(√a₁,...,√a_n)/K is a separable finite extension and thus
 - generated by one element. (Primitive Element Theorem)

Let T be the theory of fields with $2 \neq 0$.

• Let C be the set of quantifier-free \mathcal{L}_{ring} -formulas $\psi(Y, X_1, \dots, X_m)$ for which

 $T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$

Let T be the theory of fields with $2 \neq 0$.

• Let C be the set of quantifier-free \mathcal{L}_{ring} -formulas $\psi(Y, X_1, \dots, X_m)$ for which

$$T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$$

Claim: For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in C$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.

Let T be the theory of fields with $2 \neq 0$.

• Let C be the set of quantifier-free \mathcal{L}_{ring} -formulas $\psi(Y, X_1, \dots, X_m)$ for which

$$T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$$

- **Claim:** For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in C$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
 - Let K_0 be the smallest subfield of K containing a_1, \ldots, a_m , set $L = K_0(\sqrt{a_1}, \ldots, \sqrt{a_m})$, and let b be a primitive element of L/K_0 .

Let T be the theory of fields with $2 \neq 0$.

• Let C be the set of quantifier-free \mathcal{L}_{ring} -formulas $\psi(Y, X_1, \dots, X_m)$ for which

$$T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$$

- **Claim:** For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in C$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
 - Let K_0 be the smallest subfield of K containing a_1, \ldots, a_m , set $L = K_0(\sqrt{a_1}, \ldots, \sqrt{a_m})$, and let b be a primitive element of L/K_0 .
 - Denoting by *D* the quantifier-free $\mathcal{L}_{ring}(X_1, \ldots, X_m, Y)$ -theory of *L* (where we interpret X_i as a_i and *Y* as *b*), we get $D \cup T \models \pi_m(X_1, \ldots, X_m)$.

Let T be the theory of fields with $2 \neq 0$.

• Let C be the set of quantifier-free \mathcal{L}_{ring} -formulas $\psi(Y, X_1, \dots, X_m)$ for which

$$T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$$

- **Claim:** For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in C$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.
 - Let K_0 be the smallest subfield of K containing a_1, \ldots, a_m , set $L = K_0(\sqrt{a_1}, \ldots, \sqrt{a_m})$, and let b be a primitive element of L/K_0 .
 - Denoting by *D* the quantifier-free $\mathcal{L}_{ring}(X_1, \ldots, X_m, Y)$ -theory of *L* (where we interpret X_i as a_i and *Y* as *b*), we get $D \cup T \models \pi_m(X_1, \ldots, X_m)$.
 - By the Compactness Theorem, there exist $\psi_1, \ldots, \psi_r \in D$ such that

$$T \models \exists Y(\bigwedge_{i=1}^{'} \psi_i) \rightarrow \pi_m(X_1,\ldots,X_m),$$

inversity of Antwerp proving the claim.

Let T be the theory of fields with $2 \neq 0$.

• Let C be the set of quantifier-free \mathcal{L}_{ring} -formulas $\psi(Y, X_1, \dots, X_m)$ for which

 $T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$

For any $K \models T$ and $a_1, \ldots, a_m \in \Box K$, there is some $\psi \in C$ such that $K \models \exists Y \psi(Y, a_1, \ldots, a_m)$.

Let T be the theory of fields with $2 \neq 0$.

■ Let *C* be the set of quantifier-free *L*_{ring}-formulas $\psi(Y, X_1, ..., X_m)$ for which

$$T \models \exists Y \psi(Y, X_1, \ldots, X_m) \rightarrow \pi_m(X_1, \ldots, X_m).$$

- For any K ⊨ T and a₁,..., a_m ∈ □K, there is some ψ ∈ C such that K ⊨ ∃Yψ(Y, a₁,..., a_m).
- By the Compactness Theorem, there exist φ₁,..., φ_s ∈ C such that T ⊨ ∃Y(∨^s_{i=1} φ_i) ↔ π_m. We conclude that π_m is indeed equivalent to an existential formula with one quantifier modulo T.

An example of an existential formula with one quantifier equivalent to π_2 is given by

 $\exists Y((X_1 - X_2)^2 Y^4 - 2(X_1 + X_2) Y^2 + 1 \doteq 0 \lor (X_1 \doteq 0 \land X_2 \doteq 0)).$

Explicit techniques to construct existential formulas equivalent to a given formula and with the optimal number of quantifiers, will be discussed in upcoming work with Karim Becher.

Quantitative preservation theorem

Proposition

Let φ be an \mathcal{L}_{ring} -formula, $m \in \mathbb{N}$, T the theory of fields. The following are equivalent:

- 1. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\varphi) \leq m.$
- 2. For every field K and every $\underline{x} \in \varphi(K)$ there is a subfield K' of K generated by \underline{x} and m further elements such that $K' \models \varphi(\underline{x})$.

Quantitative preservation theorem

Proposition

Let φ be an \mathcal{L}_{ring} -formula, $m \in \mathbb{N}$, T the theory of fields. The following are equivalent:

- 1. $\operatorname{rk}_{\mathcal{L}_{\operatorname{ring}}, T}^{\exists}(\varphi) \leq m.$
- 2. For every field K and every $\underline{x} \in \varphi(K)$ there is a subfield K' of K generated by \underline{x} and m further elements such that $K' \models \varphi(\underline{x})$.

This principle generalises to arbitrary languages and theories:

Proposition

Let \mathcal{L} be a first-order language, φ an \mathcal{L} -formula, T an \mathcal{L} -theory, $m \in \mathbb{N}$. The following are equivalent:

- 1. $\operatorname{rk}_{\mathcal{L},\mathcal{T}}^{\exists}(\varphi) \leq m$.
- For every K ⊨ T and every <u>x</u> ∈ φ(K) there is an *L*-substructure A of K generated by <u>x</u> and m further elements such that L ⊨ φ(ρ(<u>x</u>)) for every *L*-embedding ρ : A → L where L ⊨ T.

Another application

Corollary

Let T be the theory of fields of characteristic 0. For \mathcal{L} -formulas φ_1, φ_2 with $\mathrm{rk}^\exists_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}(\varphi_1), \mathrm{rk}^\exists_{\mathcal{L}_{\mathrm{ring}}, \mathcal{T}}(\varphi_2) \geq 1$ one has

$$\mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\varphi_1 \wedge \varphi_2) \leq \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\varphi_1) + \mathrm{rk}_{\mathcal{L}_{\mathrm{ring}},\mathcal{T}}^{\exists}(\varphi_2) - 1.$$

Proof idea.

If L_1/K and L_2/K are field extensions in characteristic 0 which are not purely transcendental and which are generated by m_1 respectively m_2 elements, then any compositum L_1L_2 is generated by $m_1 + m_2 - 1$ elements over K. Now invoke the previous proposition.

• (Pasten [Pas21], building on Kollár [Kol08]) In $K = \mathbb{C}(T)$, for every $m \in \mathbb{N}^+$ the set

 $D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}$

has $\operatorname{rk}_{K}^{\exists}(D_{m}) = m$.

• (Pasten [Pas21], building on Kollár [Kol08]) In $K = \mathbb{C}(T)$, for every $m \in \mathbb{N}^+$ the set

$$D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}$$

has $\operatorname{rk}_{K}^{\exists}(D_{m}) = m$.

• There exists a field K such that for all $m \in \mathbb{N}$, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$.

• (Pasten [Pas21], building on Kollár [Kol08]) In $K = \mathbb{C}(T)$, for every $m \in \mathbb{N}^+$ the set

$$D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}$$

has $\operatorname{rk}_{K}^{\exists}(D_{m}) = m$.

- There exists a field K such that for all $m \in \mathbb{N}$, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$.
- If *K* is a large imperfect field of characteristic 2 (e.g. $K = \mathbb{F}_2((T))$), then $\operatorname{rk}_{K}^{\exists}((\Box K)^m) = m$ for all $m \in \mathbb{N}$.

• (Pasten [Pas21], building on Kollár [Kol08]) In $K = \mathbb{C}(T)$, for every $m \in \mathbb{N}^+$ the set

$$D_m = \{a_0 + a_1T + \ldots + a_mT^m \mid a_0, \ldots, a_m \in \mathbb{C}\}$$

has $\operatorname{rk}_{K}^{\exists}(D_{m}) = m$.

- There exists a field K such that for all $m \in \mathbb{N}$, $\operatorname{rk}_{K}^{\exists}(S_{m}(K)) = m$.
- If K is a large imperfect field of characteristic 2 (e.g. $K = \mathbb{F}_2((T))$), then $\mathrm{rk}_K^{\exists}((\Box K)^m) = m$ for all $m \in \mathbb{N}$.
- On the other hand, if K is a finitely generated field (e.g. $K = \mathbb{F}_2(T)$), then $\operatorname{rk}_{K}^{\exists}((\Box K)^m) = 1$ for all $m \in \mathbb{N}^+$.

For a field K, we define

 $\operatorname{rk}^{\exists,1}(K) = \sup{\operatorname{rk}^{\exists}(D) \mid D \subseteq K \text{ existentially definable in } K}.$

• If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.

For a field K, we define

- If K is finite or algebraically closed, then rk^{∃,1}(K) = 0.
 If K is real closed, p-adically closed, or perfect
- pseudo-algebraically closed, then $\mathrm{rk}^{\exists,1}(\mathcal{K}) \leq 1.$

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.
- If K is a global field, then rk^{∃,1}(K) ≥ 2. If rk^{∃,1}(Q) < ∞, then Z is not existentially definable in Q.

For a field K, we define

- If K is finite or algebraically closed, then $rk^{\exists,1}(K) = 0$.
- If K is real closed, p-adically closed, or perfect pseudo-algebraically closed, then rk^{∃,1}(K) ≤ 1.
- If K is large and imperfect (e.g. $K = \mathbb{F}_p((T))$) then $\mathrm{rk}^{\exists,1}(K) = \infty$.
- If K is a global field, then rk^{∃,1}(K) ≥ 2. If rk^{∃,1}(Q) < ∞, then Z is not existentially definable in Q.
- **Question:** Is there a field K with $\operatorname{rk}^{\exists,1}(K) \notin \{0, 1, \infty\}$?

References

[DDF21] Nicolas Daans, Philip Dittmann, and Arno Fehm. "Existential rank and essential dimension of diophantine sets". available as arXiv:2102.06941. 2021.

- [KM03] Nikita Karpenko and Alexander Merkurjev. "Essential dimension of quadrics". In: Inventiones Mathematicae 153 (2003), pp. 361–372.
- [Kol08] János Kollár. "Diophantine subsets of function fields of curves".
 In: Algebra & Number Theory 2.3 (2008), pp. 299–311.
- [Pas21] Hector Pasten. "Notes on the DPRM property for listable structures". available as arXiv:2012.14054. Jan. 2021.

Nicolas Daans *E-mail*: nicolas.daans@uantwerpen.be *Office:* M.G.223

