G University of Antwerp
I Faculty of Science

How many quantifiers are needed to
existentially define a given subset of a

field?
Based on joint work with Arno Fehm & Philip Dittmann
Nicolas Daans

18 June 2021



Existentially definable subsets

Let K be a field, D C K" for some n € N.

D is called existentially definable (in K") if D = ¢(K) for some
existential formula ¢ in n free variables in the first-order language of
rings with parameters from K.
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Let K be a field, D C K" for some n € N.

D is called existentially definable (in K") if D = ¢(K) for some
existential formula ¢ in n free variables in the first-order language of
rings with parameters from K.

Equivalently,
D={xeK"|fi(x,Y),...,f(x,Y) have a common zero in K™}

forsomer,meN, fi,....f, € K[X1,...,Xn, Y1,..., Ynl.
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Existentially definable subsets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets (quantifier-freely definable).
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m Finite and cofinite subsets (quantifier-freely definable).
m The set of squares of the field K:

OK ={xe€K|3yecK:x=y}
m For K = Q, the set of non-negative rationals:

Qoo={x€Q|31,....ya €Q:x=y2+y2 +y2+y2}.
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Existentially definable subsets

Examples of existentially definable subsets of fields (n = 1):

m Finite and cofinite subsets (quantifier-freely definable).
m The set of squares of the field K:

OK ={xe€K|3yecK:x=y}
m For K = Q, the set of non-negative rationals:
Quo={x€Q|I,....ym €Q:x =y} +y3 +y; +yi}.
m The set of sums of m squares of a field, i.e.

m
Elyl,...,ymGK:X:Zy,-z}.

i=1

Sm(K) = {x €K
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Existentially definable subsets

m In general, to decide whether a given subset of a field K (or
more generally, a subset of K”) is existentially definable, is hard.
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Existentially definable subsets

m In general, to decide whether a given subset of a field K (or
more generally, a subset of K”) is existentially definable, is hard.

m If K has a “rich arithmetic” (e.g. number field), many subsets
could be existentially definable.

m e.g. Question: Is Z an existentially definable subset of Q7
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How many quantifiers?

We can ask: if a subset D is existentially definable, what is the
“simplest” description which can be given to it?

There are different ways we could attach a number to an existentially
definable set to express its simplicity or complexity. We will use the
following:

Definition
Let K be a field, n € N, D C K". The existential rank of D (in K") is defined to be the
smallest natural number m such that D = ¢(K) for some existential Ling(K)-formula

with m quantifiers. We denote it by rki (D). If D is not existentially definable, we set
rkj; (D) = oo.

(Lring is the language of rings, Ling(K) the language of rings with parameters from K)
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How many quantifiers?

m For any field K, rky(Sm(K)) < m.
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How many quantifiers?

m For any field K, rky(Sm(K)) < m.
m Since for K = Q one has for all m > 4 that
Sm(Q) = Q>0 = S4(Q), we have rk(S,(Q)) < 4 for all m.

m In fact, one has

Q>0 = S3(Q) U253(Q),

so even 1kg)(Q>0) < 3. Question: Do we have 1kg)(Q>o) = 37
m Question: Is there any subset D of Q with 2 < rkg(D) < oo?

m If kg (Z) < 0o, then there exists N € N such that rkg (D) < N
for all existentially definable D C Q.

m Determining rky (D) is in general hard.
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Existential rank of formulas

Consider for each m € N the following formulas in the language of
rings:
m
om(X) =3Y1,. ., Ym(X =D Y7

i=1
m

Tm(X1s s Xm) =3V, Y\ Xi = Y7)
i=1

Can opm(X) or mm( X1, ..., X,) be written with less quantifiers
“independently of the underlying field"? l.e. can Sp,(K) and (OK)™
be defined uniformly in the class of fields with less than m quantifiers?

(U
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Existential rank of formulas
Definition
Let £ be a first-order language, ¢ an L-formula, T an L-theory. The L-existential rank

of ¢ modulo T, denoted by rk%’T(ap) is the smallest integer m such that T |= ¢ <> 4 for

some existential £-formula ¢ with m quantifiers. We set rk%‘T(cp) = oo if no such
integer m exists.

Remarks:

m We recover from this the existential rank of a subset D = ¢(K)
of some field K, namely rky (D) = rkaﬂring(K),Thcring(K)(K)(‘p)'
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Existential rank of formulas
Definition
Let £ be a first-order language, ¢ an L-formula, T an L-theory. The L-existential rank

of ¢ modulo T, denoted by rki’T(ap) is the smallest integer m such that T |= ¢ <> 4 for

some existential £-formula ¢ with m quantifiers. We set rk%‘T(cp) = oo if no such
integer m exists.

Remarks:

m We recover from this the existential rank of a subset D = ¢(K)
of some field K, namely rky (D) = rkaﬂring(K),Thgring(K)(K)("D)'

m For L-formulas o1, > and an L-theory T one has

tkz (01 A 2) S TRZ (1) + 1kZ 7(02)
rkz (o1 V @2) < max{rkz 7(¢1),rkz 7(2)}

|- i
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Existential rank of formulas

In the language of rings and with

om(X)=3V1,. . Yim(X =D VP
i=1

Tm(Xes o Xm) =3V, Yo\ X = YP)
i=1
rkp, T if T = theory of
fields
am(X)
7Tm(X17 . 7Xm)
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Existential rank of formulas

In the language of rings and with

om(X)=3V1,. . Yim(X =D VP
i=1

Tm(Xes o Xm) =3V, Yo\ X = YP)
i=1
rkp, T if T = theory of if T = theory of
fields fields with 2 £ 0
om(X) m m
7Tm(X1,...,Xm) m 1
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QOutline

1. Introduction

2. Understanding existential rank of formulae: a model-theoretic
framework

3. Qutlook: lower bounds for existentially definable sets, existential
rank of a field
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Sums of m squares

Assume that
Jm(X) = ElYl? ceey Ym(X = Z \/12)

is equivalent to an existential formula ¢(X) with m — 1 existential
quantifiers for all fields in which 2 £ 0. We want to reach a
contradiction.
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Sums of m squares

m There exists an intermediate field K’ of L/K generated by m — 1
elements over K such that K’ |=¢(T).
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Sums of m squares

m There exists an intermediate field K’ of L/K generated by m — 1
elements over K such that K’ |=¢(T).

m K'Eom(T), ie. T isasum of msquares in K'.
m K’ has transcendence degree at most m — 2 over K.

m But by results on the essential dimension of quadrics (Karpenko,
Merkurjev [KMO03]), T is not a sum of m squares in any
intermediate field of L/K of transcendence degree less than
m — 1 over K. Contradiction.

We conclude that rk%ring,T(Um) = m where T is the theory of fields
(or even the theory of fields of characteristic 0).

Note: we did not show that there exists a field K with
ki (Sm(K)) = m.

3
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Tuples of m squares

For m € N we had

Tm(Xes s Xm) = 3V, Yo\ Xi = YD),

m By similar arguments as before, this time arguing via the

extension Fo(v/T1, ...,/ Tm)/Fa(T1,..., Trm), one sees that
rkzing’-,-(wm) = m where T is the theory of fields in which 2 = 0.
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Tuples of m squares

For m € N we had

Tm(Xes s Xm) = 3V, Yo\ Xi = YD),

m By similar arguments as before, this time arguing via the

extension Fo(v/T1,...,v/Tm)/Fa(T1,..., Tm), one sees that
rkzing’-,-(wm) = m where T is the theory of fields in which 2 = 0.
m However, for fields in which 2 7 0 this argument fails: for any
such field K and a;,...,an € K, the extension
K(\/a1,...,+/an)/K is a separable finite extension and thus
generated by one element. (Primitive Element Theorem)
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Tuples of m squares
Let T be the theory of fields with 2 # 0.

m Let C be the set of quantifier-free L,ing-formulas
P(Y, X1,...,Xm) for which

TEIVY(Y, Xe, .o, Xm) = Tm(Xe, -, Xim).
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P(Y, X1,...,Xm) for which

TEIVY(Y, Xe, .o, Xm) = Tm(Xe, -, Xim).

m Claim: For any K |= T and ay,...,a, € OK, there is some
¥ € C such that K |=3Y (Y, a1,...,am).
m Let Ky be the smallest subfield of K containing ay, ..., an,, set

L= Ko(\/a1,--.,+/am), and let b be a primitive element of L/Kp.
m Denoting by D the quantifier-free Lying(X1,. .., Xm, Y)-theory of

L (where we interpret X; as a; and Y as b), we get

DUT E mm(Xy,..., Xm).
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Tuples of m squares
Let T be the theory of fields with 2 # 0.

m Let C be the set of quantifier-free L,ing-formulas
P(Y, X1,...,Xm) for which

TEIVY(Y, Xe, .o, Xm) = Tm(Xe, -, Xim).

m Claim: For any K |= T and ay,...,a, € OK, there is some
¥ € C such that K |=3Y (Y, a1,...,am).
m Let Ky be the smallest subfield of K containing ay, ..., an,, set

L= Ko(\/a1,--.,+/am), and let b be a primitive element of L/Kp.
m Denoting by D the quantifier-free Lying(X1,. .., Xm, Y)-theory of
L (where we interpret X; as a; and Y as b), we get
DUT E mm(Xy,..., Xm).
m By the Compactness Theorem, there exist 91, ...,1, € D such
that

r

T V(A 6) . X0),

i=1
s Proving the claim.
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Tuples of m squares

Let T be the theory of fields with 2 # 0.

m Let C be the set of quantifier-free L,ing-formulas
(Y, X1,...,Xm) for which

TE3IYY(Y, Xty o, Xm) = Tm( X1, -, Xim).

m Forany K = T and ay,...,anm € OK, there is some ¢ € C such
that K = 3Yy(Y,a1,...,am).
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Tuples of m squares

Let T be the theory of fields with 2 # 0.

m Let C be the set of quantifier-free L,ing-formulas
(Y, X1,...,Xm) for which

TE3IYY(Y, Xty o, Xm) = Tm( X1, -, Xim).

m Forany K = T and ay,...,anm € OK, there is some ¢ € C such
that K = 3Yy(Y,a1,...,am).

m By the Compactness Theorem, there exist 1, ..., ps € C such
that T = 3Y(\/;_; ¢i) > ™m. We conclude that 7, is indeed
equivalent to an existential formula with one quantifier modulo
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Tuples of m squares

An example of an existential formula with one quantifier equivalent
to 7y is given by

FY (X1 — X)2Y* = 2(X1 + Xo) Y2+ 1=0V (X; =0A Xp =0)).

Explicit techniques to construct existential formulas equivalent to a
given formula and with the optimal number of quantifiers, will be
discussed in upcoming work with Karim Becher.
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Quantitative preservation theorem

Proposition
Let ¢ be an Lyng-formula, m € N, T the theory of fields. The following are equivalent:
1. rk2  +(p) < m.

ring >
2. For every field K and every x € ¢(K) there is a subfield K’ of K generated by x
and m further elements such that K’ |= ¢(x).

e 17/21



Quantitative preservation theorem

Proposition

Let ¢ be an Lyng-formula, m € N, T the theory of fields. The following are equivalent:
1. rk2  +(p) < m.

2. For every field K and every x € ¢(K) there is a subfield K’ of K generated by x
and m further elements such that K’ |= ¢(x).

ring »

This principle generalises to arbitrary languages and theories:

Proposition
Let L be a first-order language, ¢ an L-formula, T an L-theory, m € N. The following
are equivalent:

1. rsz(go) < m.

2. For every K |= T and every x € ¢(K) there is an L-substructure A of K generated

by x and m further elements such that L |= ¢(p(x)) for every L-embedding
p:A— Lwhere LI=T.
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Another application

Corollary

Let T be the theory of fields of characteristic 0. For L-formulas 1,2 with

rkzingy-,-(cpl),rk?:ring’-r(goz) > 1 one has

rkiring,T(S@l Ap2) < rk%,ing,r(wl) + rk%,ing,T(W) =1

Proof idea.

If L1/K and Ly/K are field extensions in characteristic 0 which are not purely
transcendental and which are generated by mj respectively my elements, then any
compositum LjL, is generated by m; 4+ my — 1 elements over K. Now invoke the previous
proposition. O

v
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Outlook: lower bounds for existentially
definable sets

m (Pasten [Pas21], building on Kollar [Kol08]) In K = C(T), for
every m € N the set

Dm={ao+aT+...+amT™|a,...,am € C}

has rkyx (D) = m.
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Outlook: lower bounds for existentially
definable sets

m (Pasten [Pas21], building on Kollar [Kol08]) In K = C(T), for
every m € N the set

Dm={ao+aT+...+amT™|a,...,am € C}

has rkyx (D) = m.
m There exists a field K such that for all m € N, rkj(Sn(K)) = m.

m If K is a large imperfect field of characteristic 2 (e.g.
K =TF2((T))), then rky ((OK)™) = m for all m € N.

m On the other hand, if K is a finitely generated field (e.g.
K =TF»(T)), then rkj ((EOK)™) =1 for all m € N*.
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Outlook: existential rank of a field
For a field K, we define

rk™!(K) = sup{rk™(D) | D C K existentially definable in K}.

m If K is finite or algebraically closed, then rk™'(K) = 0.
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Outlook: existential rank of a field

For a field K, we define

rk™!(K) = sup{rk™(D) | D C K existentially definable in K}.

m If K is finite or algebraically closed, then rk™'(K) = 0.

m If K is real closed, p-adically closed, or perfect
pseudo-algebraically closed, then rk™!(K) < 1.
m If K is large and imperfect (e.g. K =F,((T))) then
rk?'(K) = oc.
m If K is a global field, then rk™'(K) > 2. If rk™!(Q) < oo, then Z
is not existentially definable in Q.
Question: Is there a field K with rk™'(K) ¢ {0,1,00}?
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