Publications
Universal quadratic forms and Northcott property of infinite number fields
Nicolas Daans, Vı́tězslav Kala, and Siu Hang Man. “Universal quadratic forms and Northcott property of infinite number fields”. In: Journal of the London Mathematical Society 110.5 (2024), e70022. https://doi.org/10.1112/jlms.70022
published version arXiv
Linkage of Pfister forms over semi-global fields
Nicolas Daans. “Linkage of Pfister forms over semi-global fields”. In: Mathematische Zeitschrift 308 (2024), 41. https://doi.org/10.1007/s00209-024-03598-2
published version, arXiv
Universally defining $\mathbb{Z}$ in $\mathbb{Q}$ with $10$ quantifiers
Nicolas Daans. “Universally defining $\mathbb{Z}$ in $\mathbb{Q}$ with $10$ quantifiers”. In: Journal of the London Mathematical Society 109.2 (2024), e12864. https://doi.org/10.1112/jlms.12864
published version, arXiv
Universally defining finitely generated subrings of global fields
Nicolas Daans. “Universally defining finitely generated subrings of global fields”. In: Documenta Mathematica 26 (2021), pp. 1851-1869. https://doi.org/10.4171/dm/858
published version, arXiv
Preprints
Most totally real fields do not have universal forms or Northcott property
Nicolas Daans, Vı́tězslav Kala, Siu Hang Man, Martin Widmer, Pavlo Yatsyna. “Most totally real fields do not have universal forms or Northcott property”. Available as arXiv:2409.11082. Sep. 2024.
arXiv
Failures of integral Springer’s Theorem
Nicolas Daans, Vı́tězslav Kala, Jakub Krásenský, and Pavlo Yatsyna. “Failures of integral Springer’s Theorem”. Available as arXiv:2404.12844. Apr. 2024.
arXiv
Universally defining subrings in function fields
Nicolas Daans and Philip Dittmann. “Universally defining subrings in function fields”. Available as arXiv:2404.02749. Apr. 2024.
arXiv
Uniform existential definitions of valuations in function fields in one variable
Karim Johannes Becher, Nicolas Daans, and Philip Dittmann. “Uniform existential definitions of valuations in function fields in one variable”. Available as arXiv:2311.06044. Nov. 2023.
arXiv
The Pythagoras number of a rational function field in two variables
Karim Johannes Becher, Nicolas Daans, David Grimm, Gonzalo Manzano-Flores, and Marco Zaninelli. “The Pythagoras number of a rational function field in two variables”. Available as arXiv:2302.11425. Feb. 2023.
arXiv
Existential rank and essential dimension of diophantine sets
Nicolas Daans, Philip Dittmann, and Arno Fehm. “Existential rank and essential dimension of diophantine sets”. Available as arXiv:2102.06941. Oct. 2021.
arXiv
Theses
PhD thesis: Existential first-order definitions and quadratic forms
Nicolas Daans. “Existential first-order definitions and quadratic forms”. PhD thesis. University of Antwerp, 2022.
Under the supervision of Karim Johannes Becher and Philip Dittmann. University of Antwerp repository
Master thesis: Diophantine definability in number fields and their rings of integers
Nicolas Daans. “Diophantine definability in number fields and their rings of integers”. Master thesis. University of Antwerp, 2018.
Under the supervision of Karim Johannes Becher. pdf
Bachelor thesis: Het pythagorasgetal van enkele commutatieve ringen
Nicolas Daans. “Het pythagorasgetal van enkele commutatieve ringen [The Pythagoras number of certain commutative rings]”. Bachelor thesis. University of Antwerp, 2016.
Under the supervision of Karim Johannes Becher. Scriptiebank
Bachelor thesis: Iteratieve methoden voor de golfvergelijking
Nicolas Daans. “Iteratieve methoden voor de golfvergelijking [Iterative methods for the wave equation]”. Bachelor thesis. University of Antwerp, 2016.
Under the supervision of Wim Vanroose and Siegfried Cools. pdf